
Hopcroft’s Problem
2D Fractional Cascading and Decision Trees

Timothy M. Chan and Da Wei Zheng
January 9, 2022

University of Illinois Urbana-Champaign

1

Outline

Introduction

Definition and Motivation

History

Previous approaches

Approach I - Fractional Cascading

Approach II - Algebraic Decision Trees

Conclusion

2

What is Hopcroft’s problem?

Given n points and n lines, does any point lie on any line?

Given n points and n lines, how many point-line incidences are there?

Given n points and n lines, how many line-below-point pairs are there?

3

What is Hopcroft’s problem?

Given n points and n lines, does any point lie on any line?

Given n points and n lines, how many point-line incidences are there?

Given n points and n lines, how many line-below-point pairs are there?

3

What is Hopcroft’s problem?

Given n points and n lines, does any point lie on any line?

Given n points and n lines, how many point-line incidences are there?

Given n points and n lines, how many line-below-point pairs are there?

3

What is Hopcroft’s problem?

Given n points and n lines, does any point lie on any line?

Given n points and n lines, how many point-line incidences are there?

Given n points and n lines, how many line-below-point pairs are there?

3

What is Hopcroft’s problem?

Given n points and n lines, does any point lie on any line?

Given n points and n lines, how many point-line incidences are there?

Given n points and n lines, how many line-below-point pairs are there?

3

What is Hopcroft’s problem?

Given n points and n lines, does any point lie on any line?

Given n points and n lines, how many point-line incidences are there?

Given n points and n lines, how many line-below-point pairs are there?

3

What is Hopcroft’s problem?

Given n points and n lines, does any point lie on any line?

Given n points and n lines, how many point-line incidences are there?

Given n points and n lines, how many line-below-point pairs are there?

3

What is Hopcroft’s problem?

Given n points and n lines, does any point lie on any line?

Given n points and n lines, how many point-line incidences are there?

Given n points and n lines, how many line-below-point pairs are there?

3

What is Hopcroft’s problem?

Given n points and n lines, does any point lie on any line?

Given n points and n lines, how many point-line incidences are there?

Given n points and n lines, how many line-below-point pairs are there?

3

Why do we care about Hopcroft’s problem?

It is related to many offline problems involving range searching.

• Offline half-space range query
• Offline simplex range query
• 2D line segment intersection counting
• 2D line segment connected components
• 3D line towering problem
• 3D vertical distance between polyhedral terrains
• 3D Bichromatic closest pair
• 3D Euclidean Minimum Spanning Tree

... and many other problems in computational geometry!

4

Why do we care about Hopcroft’s problem?

It is related to many offline problems involving range searching.

• Offline half-space range query
• Offline simplex range query

• 2D line segment intersection counting
• 2D line segment connected components
• 3D line towering problem
• 3D vertical distance between polyhedral terrains
• 3D Bichromatic closest pair
• 3D Euclidean Minimum Spanning Tree

... and many other problems in computational geometry!

4

Why do we care about Hopcroft’s problem?

It is related to many offline problems involving range searching.

• Offline half-space range query
• Offline simplex range query
• 2D line segment intersection counting
• 2D line segment connected components

• 3D line towering problem
• 3D vertical distance between polyhedral terrains
• 3D Bichromatic closest pair
• 3D Euclidean Minimum Spanning Tree

... and many other problems in computational geometry!

4

Why do we care about Hopcroft’s problem?

It is related to many offline problems involving range searching.

• Offline half-space range query
• Offline simplex range query
• 2D line segment intersection counting
• 2D line segment connected components
• 3D line towering problem
• 3D vertical distance between polyhedral terrains

• 3D Bichromatic closest pair
• 3D Euclidean Minimum Spanning Tree

... and many other problems in computational geometry!

4

Why do we care about Hopcroft’s problem?

It is related to many offline problems involving range searching.

• Offline half-space range query
• Offline simplex range query
• 2D line segment intersection counting
• 2D line segment connected components
• 3D line towering problem
• 3D vertical distance between polyhedral terrains
• 3D Bichromatic closest pair
• 3D Euclidean Minimum Spanning Tree

... and many other problems in computational geometry!

4

Why do we care about Hopcroft’s problem?

It is related to many offline problems involving range searching.

• Offline half-space range query
• Offline simplex range query
• 2D line segment intersection counting
• 2D line segment connected components
• 3D line towering problem
• 3D vertical distance between polyhedral terrains
• 3D Bichromatic closest pair
• 3D Euclidean Minimum Spanning Tree

... and many other problems in computational geometry! 4

Outline

Introduction

Definition and Motivation

History

Previous approaches

Approach I - Fractional Cascading

Approach II - Algebraic Decision Trees

Conclusion

5

History

Posed by Hopcroft in the 1980s - n points and n lines, any point on any line?

• O(n2) Brute force.

• O(n1.695) [Chazelle, 1986] (line segment intersection).
• O(n3/2 log1/2 n) [Hopcroft & Seidel, 1986?] (no paper).
• O(n1.412) [Cole, Sharir, Yap, 1987].
• O(n4/3+ε) [Edelsbrunner, Guibas, Sharir, 1990].
• O(n4/3 log4 n) [Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, Welzl 1989].
• O(n4/3 log1.78 n) [Agarwal, 1990].
• O(n4/3 log1/3 n) [Chazelle, 1993].
• O(n4/32O(log∗ n)) [Matoušek 1993].
• Ω(n4/3) [Erickson 1996] (For so-called partitioning algorithm).
• and now ...

6

History

Posed by Hopcroft in the 1980s - n points and n lines, any point on any line?

• O(n2) Brute force.
• O(n1.695) [Chazelle, 1986] (line segment intersection).

• O(n3/2 log1/2 n) [Hopcroft & Seidel, 1986?] (no paper).
• O(n1.412) [Cole, Sharir, Yap, 1987].
• O(n4/3+ε) [Edelsbrunner, Guibas, Sharir, 1990].
• O(n4/3 log4 n) [Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, Welzl 1989].
• O(n4/3 log1.78 n) [Agarwal, 1990].
• O(n4/3 log1/3 n) [Chazelle, 1993].
• O(n4/32O(log∗ n)) [Matoušek 1993].
• Ω(n4/3) [Erickson 1996] (For so-called partitioning algorithm).
• and now ...

6

History

Posed by Hopcroft in the 1980s - n points and n lines, any point on any line?

• O(n2) Brute force.
• O(n1.695) [Chazelle, 1986] (line segment intersection).
• O(n3/2 log1/2 n) [Hopcroft & Seidel, 1986?] (no paper).

• O(n1.412) [Cole, Sharir, Yap, 1987].
• O(n4/3+ε) [Edelsbrunner, Guibas, Sharir, 1990].
• O(n4/3 log4 n) [Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, Welzl 1989].
• O(n4/3 log1.78 n) [Agarwal, 1990].
• O(n4/3 log1/3 n) [Chazelle, 1993].
• O(n4/32O(log∗ n)) [Matoušek 1993].
• Ω(n4/3) [Erickson 1996] (For so-called partitioning algorithm).
• and now ...

6

History

Posed by Hopcroft in the 1980s - n points and n lines, any point on any line?

• O(n2) Brute force.
• O(n1.695) [Chazelle, 1986] (line segment intersection).
• O(n3/2 log1/2 n) [Hopcroft & Seidel, 1986?] (no paper).
• O(n1.412) [Cole, Sharir, Yap, 1987].

• O(n4/3+ε) [Edelsbrunner, Guibas, Sharir, 1990].
• O(n4/3 log4 n) [Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, Welzl 1989].
• O(n4/3 log1.78 n) [Agarwal, 1990].
• O(n4/3 log1/3 n) [Chazelle, 1993].
• O(n4/32O(log∗ n)) [Matoušek 1993].
• Ω(n4/3) [Erickson 1996] (For so-called partitioning algorithm).
• and now ...

6

History

Posed by Hopcroft in the 1980s - n points and n lines, any point on any line?

• O(n2) Brute force.
• O(n1.695) [Chazelle, 1986] (line segment intersection).
• O(n3/2 log1/2 n) [Hopcroft & Seidel, 1986?] (no paper).
• O(n1.412) [Cole, Sharir, Yap, 1987].
• O(n4/3+ε) [Edelsbrunner, Guibas, Sharir, 1990].

• O(n4/3 log4 n) [Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, Welzl 1989].
• O(n4/3 log1.78 n) [Agarwal, 1990].
• O(n4/3 log1/3 n) [Chazelle, 1993].
• O(n4/32O(log∗ n)) [Matoušek 1993].
• Ω(n4/3) [Erickson 1996] (For so-called partitioning algorithm).
• and now ...

6

History

Posed by Hopcroft in the 1980s - n points and n lines, any point on any line?

• O(n2) Brute force.
• O(n1.695) [Chazelle, 1986] (line segment intersection).
• O(n3/2 log1/2 n) [Hopcroft & Seidel, 1986?] (no paper).
• O(n1.412) [Cole, Sharir, Yap, 1987].
• O(n4/3+ε) [Edelsbrunner, Guibas, Sharir, 1990].
• O(n4/3 log4 n) [Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, Welzl 1989].

• O(n4/3 log1.78 n) [Agarwal, 1990].
• O(n4/3 log1/3 n) [Chazelle, 1993].
• O(n4/32O(log∗ n)) [Matoušek 1993].
• Ω(n4/3) [Erickson 1996] (For so-called partitioning algorithm).
• and now ...

6

History

Posed by Hopcroft in the 1980s - n points and n lines, any point on any line?

• O(n2) Brute force.
• O(n1.695) [Chazelle, 1986] (line segment intersection).
• O(n3/2 log1/2 n) [Hopcroft & Seidel, 1986?] (no paper).
• O(n1.412) [Cole, Sharir, Yap, 1987].
• O(n4/3+ε) [Edelsbrunner, Guibas, Sharir, 1990].
• O(n4/3 log4 n) [Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, Welzl 1989].
• O(n4/3 log1.78 n) [Agarwal, 1990].

• O(n4/3 log1/3 n) [Chazelle, 1993].
• O(n4/32O(log∗ n)) [Matoušek 1993].
• Ω(n4/3) [Erickson 1996] (For so-called partitioning algorithm).
• and now ...

6

History

Posed by Hopcroft in the 1980s - n points and n lines, any point on any line?

• O(n2) Brute force.
• O(n1.695) [Chazelle, 1986] (line segment intersection).
• O(n3/2 log1/2 n) [Hopcroft & Seidel, 1986?] (no paper).
• O(n1.412) [Cole, Sharir, Yap, 1987].
• O(n4/3+ε) [Edelsbrunner, Guibas, Sharir, 1990].
• O(n4/3 log4 n) [Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, Welzl 1989].
• O(n4/3 log1.78 n) [Agarwal, 1990].
• O(n4/3 log1/3 n) [Chazelle, 1993].

• O(n4/32O(log∗ n)) [Matoušek 1993].
• Ω(n4/3) [Erickson 1996] (For so-called partitioning algorithm).
• and now ...

6

History

Posed by Hopcroft in the 1980s - n points and n lines, any point on any line?

• O(n2) Brute force.
• O(n1.695) [Chazelle, 1986] (line segment intersection).
• O(n3/2 log1/2 n) [Hopcroft & Seidel, 1986?] (no paper).
• O(n1.412) [Cole, Sharir, Yap, 1987].
• O(n4/3+ε) [Edelsbrunner, Guibas, Sharir, 1990].
• O(n4/3 log4 n) [Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, Welzl 1989].
• O(n4/3 log1.78 n) [Agarwal, 1990].
• O(n4/3 log1/3 n) [Chazelle, 1993].
• O(n4/32O(log∗ n)) [Matoušek 1993].

• Ω(n4/3) [Erickson 1996] (For so-called partitioning algorithm).
• and now ...

6

History

Posed by Hopcroft in the 1980s - n points and n lines, any point on any line?

• O(n2) Brute force.
• O(n1.695) [Chazelle, 1986] (line segment intersection).
• O(n3/2 log1/2 n) [Hopcroft & Seidel, 1986?] (no paper).
• O(n1.412) [Cole, Sharir, Yap, 1987].
• O(n4/3+ε) [Edelsbrunner, Guibas, Sharir, 1990].
• O(n4/3 log4 n) [Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, Welzl 1989].
• O(n4/3 log1.78 n) [Agarwal, 1990].
• O(n4/3 log1/3 n) [Chazelle, 1993].
• O(n4/32O(log∗ n)) [Matoušek 1993].
• Ω(n4/3) [Erickson 1996] (For so-called partitioning algorithm).

• and now ...

6

History

Posed by Hopcroft in the 1980s - n points and n lines, any point on any line?

• O(n2) Brute force.
• O(n1.695) [Chazelle, 1986] (line segment intersection).
• O(n3/2 log1/2 n) [Hopcroft & Seidel, 1986?] (no paper).
• O(n1.412) [Cole, Sharir, Yap, 1987].
• O(n4/3+ε) [Edelsbrunner, Guibas, Sharir, 1990].
• O(n4/3 log4 n) [Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, Welzl 1989].
• O(n4/3 log1.78 n) [Agarwal, 1990].
• O(n4/3 log1/3 n) [Chazelle, 1993].
• O(n4/32O(log∗ n)) [Matoušek 1993].
• Ω(n4/3) [Erickson 1996] (For so-called partitioning algorithm).
• and now ...

6

And now...

O(n4/3) algorithm for Hopcroft’s problem NEW!

7

Extensions

It also improves the runtime of many related problems!

• Offline half-space range query [Matoušek, ’93] O(n2d/(d+1)2O(log∗ n))
• Offline simplex range query [Matoušek, ’93] O(n2d/(d+1)2O(log∗ n))
• 2D line segment intersection counting [Chazelle, ’83] O(n4/3 log1/3 n)
• 2D line segment connected components [Lopez, Thurimella, ’85] O(n4/3 log3 n)
• 3D line towering problem. [Chazelle, Edelsbrunner, Guibas, Sharir, ’94] O(n4/3+ε)

• 3D vertical distance between polyhedral terrains [↑↑↑↑↑, ’94] O(n4/3+ε)

• 3D Bichromatic closest pair [Agarwal, Edelsbrunner, Schwarzkopf, Welzl, ’93] O(n4/3 log4/3 n)
• 3D Euclidean Minimum Spanning Tree [↑↑↑↑↑, ’93] O(n4/3 log4/3 n)

8

Extensions

It also improves the runtime of many related problems!

• Offline half-space range query [Matoušek, ’93] O(n2d/(d+1)2O(log∗ n))
• Offline simplex range query [Matoušek, ’93] O(n2d/(d+1)2O(log∗ n))
• 2D line segment intersection counting [Chazelle, ’83] O(n4/3 log1/3 n)
• 2D line segment connected components [Lopez, Thurimella, ’85] O(n4/3 log3 n)
• 3D line towering problem. [Chazelle, Edelsbrunner, Guibas, Sharir, ’94] O(n4/3+ε)

• 3D vertical distance between polyhedral terrains [↑↑↑↑↑, ’94] O(n4/3+ε)

• 3D Bichromatic closest pair [Agarwal, Edelsbrunner, Schwarzkopf, Welzl, ’93] O(n4/3 log4/3 n)
• 3D Euclidean Minimum Spanning Tree [↑↑↑↑↑, ’93] O(n4/3 log4/3 n)

8

Extensions

It also improves the runtime of many related problems!

• Offline half-space range query O(n2d/(d+1)2O(log∗ n))
• Offline simplex range query O(n2d/(d+1)2O(log∗ n))
• 2D line segment intersection counting O(n4/3 log1/3 n)
• 2D line segment connected components O(n4/3 log3 n)
• 3D line towering problem O(n4/3+ε)

• 3D vertical distance between polyhedral terrains O(n4/3+ε)

• 3D Bichromatic closest pair O(n4/3 log4/3 n)
• 3D Euclidean Minimum Spanning Tree O(n4/3 log4/3 n)

9

Extensions

It also improves the runtime of many related problems!

• Offline half-space range query O(n2d/(d+1))
• Offline simplex range query O(n2d/(d+1))
• 2D line segment intersection counting O(n4/3)
• 2D line segment connected components O(n4/3)
• 3D line towering problem O(n4/3)
• 3D vertical distance between polyhedral terrains O(n4/3)
• 3D Bichromatic closest pair O(n4/3)
• 3D Euclidean Minimum Spanning Tree O(n4/3)

9

Outline

Introduction

Definition and Motivation

History

Previous approaches

Approach I - Fractional Cascading

Approach II - Algebraic Decision Trees

Conclusion

10

Asymmetric Hopcroft’s Problem

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

What if we have a lot more points than lines, say m > n2?

Point Location Data structure - There exists an O(n2) data structure that allows
for point location queries in O(log n) time , so T(m,n) = O(n2 +m log n).

11

Asymmetric Hopcroft’s Problem

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

What if we have a lot more points than lines, say m > n2?

Point Location Data structure - There exists an O(n2) data structure that allows
for point location queries in O(log n) time , so T(m,n) = O(n2 +m log n).

11

Asymmetric Hopcroft’s Problem

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

What if we have a lot more points than lines, say m > n2?

Point Location Data structure - There exists an O(n2) data structure that allows
for point location queries in O(log n) time

, so T(m,n) = O(n2 +m log n).

11

Asymmetric Hopcroft’s Problem

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

What if we have a lot more points than lines, say m > n2?

Point Location Data structure - There exists an O(n2) data structure that allows
for point location queries in O(log n) time , so T(m,n) = O(n2 +m log n). 11

More lines than points

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

What if we have a lot more lines than points, say n > m2?

It would be nice if we can exchange our lines with our points.

12

More lines than points

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

What if we have a lot more lines than points, say n > m2?

It would be nice if we can exchange our lines with our points.
12

Point-Line Duality

Point-Line Duality - There exists a transform that takes points to lines and lines
to points that preserves incidences and above-below relationships.

p

p∗`

`∗

T(m,n) = T(n,m)

13

Point-Line Duality

Point-Line Duality - There exists a transform that takes points to lines and lines
to points that preserves incidences and above-below relationships.

p

p∗`

`∗

T(m,n) = T(n,m)
13

Nearly Equal Case

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

What if we have roughly equal number of lines and points, say
√
m < n < m2?

Divide and conquer?

14

Nearly Equal Case

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

What if we have roughly equal number of lines and points, say
√
m < n < m2?

Divide and conquer?
14

2D Divide and Conquer

Cuttings - Given n lines and r < n, there exists a decomposition of R2 into O(r2)
cells each with at most nr lines crossing each cell

, and at most mr2 points are in
each cell.

We can find these 1/r-cuttings in time O(nr.
Now we can decompose the problem: T(m,n) = O(r2)T

(m
r2 ,

n
r
)
+ O(nr+m log r).

15

2D Divide and Conquer

Cuttings - Given n lines and r < n, there exists a decomposition of R2 into O(r2)
cells each with at most nr lines crossing each cell

, and at most mr2 points are in
each cell.

We can find these 1/r-cuttings in time O(nr).

Now we can decompose the problem: T(m,n) = O(r2)T
(m
r2 ,

n
r
)
+ O(nr+m log r).

15

2D Divide and Conquer

Cuttings - Given m points and n lines and r < n, there exists a decomposition of
R2 into O(r2) cells each with at most nr lines crossing each cell, and at most

m
r2

points are in each cell.

We can find these 1/r-cuttings in time O(nr+m log r).

Now we can decompose the problem: T(m,n) = O(r2)T
(m
r2 ,

n
r
)
+ O(nr+m log r).

15

2D Divide and Conquer

Cuttings - Given m points and n lines and r < n, there exists a decomposition of
R2 into O(r2) cells each with at most nr lines crossing each cell, and at most

m
r2

points are in each cell.

We can find these 1/r-cuttings in time O(nr+m log r).

Now we can decompose the problem: T(m,n) = O(r2)T
(m
r2 ,

n
r
)
+ O(nr+m log r).

15

2D Divide and Conquer

Cuttings - Given m points and n lines and r < n, there exists a decomposition of
R2 into O(r2) cells each with at most nr lines crossing each cell, and at most

m
r2

points are in each cell.

We can find these 1/r-cuttings in time O(nr+m log r).
Now we can decompose the problem: T(m,n) = O(r2)T

(m
r2 ,

n
r
)
+ O(nr+m log r).

15

Applying cuttings to Hopcroft’s problem [Chazelle, 1993]

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

T(n,n) = O(r2)T
(n
r2 ,

n
r

)
+ O(nr+ n log r)

Choose r = n1/3.
T(n,n) = O(n2/3)T(n1/3,n2/3) + O(n4/3)

Use duality + point location: T(n1/3,n2/3) = O(n2/3 + n2/3 log n).

T(n,n) = O(n4/3 log n)

Slightly better with r = n1/3 log1/3 n to get O(n4/3 log1/3 n) [Chazelle, 1993]

16

Applying cuttings to Hopcroft’s problem [Chazelle, 1993]

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

T(n,n) = O(r2)T
(n
r2 ,

n
r

)
+ O(nr+ n log r)

Choose r = n1/3.
T(n,n) = O(n2/3)T(n1/3,n2/3) + O(n4/3)

Use duality + point location: T(n1/3,n2/3) = O(n2/3 + n2/3 log n).

T(n,n) = O(n4/3 log n)

Slightly better with r = n1/3 log1/3 n to get O(n4/3 log1/3 n) [Chazelle, 1993]

16

Applying cuttings to Hopcroft’s problem [Chazelle, 1993]

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

T(n,n) = O(r2)T
(n
r2 ,

n
r

)
+ O(nr+ n log r)

Choose r = n1/3.

T(n,n) = O(n2/3)T(n1/3,n2/3) + O(n4/3)

Use duality + point location: T(n1/3,n2/3) = O(n2/3 + n2/3 log n).

T(n,n) = O(n4/3 log n)

Slightly better with r = n1/3 log1/3 n to get O(n4/3 log1/3 n) [Chazelle, 1993]

16

Applying cuttings to Hopcroft’s problem [Chazelle, 1993]

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

T(n,n) = O(r2)T
(n
r2 ,

n
r

)
+ O(nr+ n log r)

Choose r = n1/3.
T(n,n) = O(n2/3)T(n1/3,n2/3) + O(n4/3)

Use duality + point location: T(n1/3,n2/3) = O(n2/3 + n2/3 log n).

T(n,n) = O(n4/3 log n)

Slightly better with r = n1/3 log1/3 n to get O(n4/3 log1/3 n) [Chazelle, 1993]

16

Applying cuttings to Hopcroft’s problem [Chazelle, 1993]

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

T(n,n) = O(r2)T
(n
r2 ,

n
r

)
+ O(nr+ n log r)

Choose r = n1/3.
T(n,n) = O(n2/3)T(n1/3,n2/3) + O(n4/3)

Use duality + point location: T(n1/3,n2/3) = O(n2/3 + n2/3 log n).

T(n,n) = O(n4/3 log n)

Slightly better with r = n1/3 log1/3 n to get O(n4/3 log1/3 n) [Chazelle, 1993]

16

Applying cuttings to Hopcroft’s problem [Chazelle, 1993]

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

T(n,n) = O(r2)T
(n
r2 ,

n
r

)
+ O(nr+ n log r)

Choose r = n1/3.
T(n,n) = O(n2/3)T(n1/3,n2/3) + O(n4/3)

Use duality + point location: T(n1/3,n2/3) = O(n2/3 + n2/3 log n).

T(n,n) = O(n4/3 log n)

Slightly better with r = n1/3 log1/3 n to get O(n4/3 log1/3 n) [Chazelle, 1993]

16

Applying cuttings to Hopcroft’s problem [Chazelle, 1993]

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

T(n,n) = O(r2)T
(n
r2 ,

n
r

)
+ O(nr+ n log r)

Choose r = n1/3.
T(n,n) = O(n2/3)T(n1/3,n2/3) + O(n4/3)

Use duality + point location: T(n1/3,n2/3) = O(n2/3 + n2/3 log n).

T(n,n) = O(n4/3 log n)

Slightly better with r = n1/3 log1/3 n to get O(n4/3 log1/3 n) [Chazelle, 1993]

16

A (rederivation of) Matoušek’s n4/32O(log∗ n) time algorithm

T(m,n) = O(r2)T
(m
r2 ,

n
r

)
+ O(nr+m log r) and T(m,n) = T(n,m)

Apply our this recursion twice (with duality)!

T(n,n) = O(r4)T
(n
r3 ,

n
r3
)
+ O(nr log r)

Choose r = n1/3
log n , to make the non-recursive term O(n4/3):

T(n,n) = O
(
n4/3

log4 n

)
T
(
log3 n, log3 n

)
+ O(n4/3)

Solving this will give:
T(n,n) = O(n4/32O(log∗ n))

17

A (rederivation of) Matoušek’s n4/32O(log∗ n) time algorithm

T(m,n) = O(r2)T
(m
r2 ,

n
r

)
+ O(nr+m log r) and T(m,n) = T(n,m)

Apply our this recursion twice (with duality)!

T(n,n) = O(r4)T
(n
r3 ,

n
r3
)
+ O(nr log r)

Choose r = n1/3
log n , to make the non-recursive term O(n4/3):

T(n,n) = O
(
n4/3

log4 n

)
T
(
log3 n, log3 n

)
+ O(n4/3)

Solving this will give:
T(n,n) = O(n4/32O(log∗ n))

17

A (rederivation of) Matoušek’s n4/32O(log∗ n) time algorithm

T(m,n) = O(r2)T
(m
r2 ,

n
r

)
+ O(nr+m log r) and T(m,n) = T(n,m)

Apply our this recursion twice (with duality)!

T(n,n) = O(r4)T
(n
r3 ,

n
r3
)
+ O(nr log r)

Choose r = n1/3
log n , to make the non-recursive term O(n4/3):

T(n,n) = O
(
n4/3

log4 n

)
T
(
log3 n, log3 n

)
+ O(n4/3)

Solving this will give:
T(n,n) = O(n4/32O(log∗ n))

17

A (rederivation of) Matoušek’s n4/32O(log∗ n) time algorithm

T(m,n) = O(r2)T
(m
r2 ,

n
r

)
+ O(nr+m log r) and T(m,n) = T(n,m)

Apply our this recursion twice (with duality)!

T(n,n) = O(r4)T
(n
r3 ,

n
r3
)
+ O(nr log r)

Choose r = n1/3
log n , to make the non-recursive term O(n4/3):

T(n,n) = O
(
n4/3

log4 n

)
T
(
log3 n, log3 n

)
+ O(n4/3)

Solving this will give:
T(n,n) = O(n4/32O(log∗ n))

17

Getting rid of extra factors?

Chazelle’s approach:

T(n,n) = O(n2/3)T
(
n1/3,n2/3

)
+ O(n4/3)

(Duality + point location) T
(
n1/3,n2/3

)
= O(n2/3 + n2/3log n)

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines

and O(n2/3) points.

O(n4/3) point locations queries total! Ω(log n) lower bound for doing a single
point query. Can we do this faster than O(n4/3 log n)?

18

Getting rid of extra factors?

Chazelle’s approach:

T(n,n) = O(n2/3)T
(
n1/3,n2/3

)
+ O(n4/3)

(Duality + point location) T
(
n1/3,n2/3

)
= O(n2/3 + n2/3log n)

· · ·

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines

and O(n2/3) points.

O(n4/3) point locations queries total! Ω(log n) lower bound for doing a single
point query. Can we do this faster than O(n4/3 log n)?

18

Getting rid of extra factors?

Chazelle’s approach:

T(n,n) = O(n2/3)T
(
n1/3,n2/3

)
+ O(n4/3)

(Duality + point location) T
(
n1/3,n2/3

)
= O(n2/3 + n2/3log n)

· · ·

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

O(n4/3) point locations queries total! Ω(log n) lower bound for doing a single
point query.

Can we do this faster than O(n4/3 log n)?

18

Getting rid of extra factors?

Chazelle’s approach:

T(n,n) = O(n2/3)T
(
n1/3,n2/3

)
+ O(n4/3)

(Duality + point location) T
(
n1/3,n2/3

)
= O(n2/3 + n2/3log n)

· · ·

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

O(n4/3) point locations queries total! Ω(log n) lower bound for doing a single
point query. Can we do this faster than O(n4/3 log n)?

18

Answer

Yes, we can!

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

Point location of n (dual) points in (average of) O(n1/3) (dual) arrangements.

19

Answer

Yes, we can!

· · ·

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

Point location of n (dual) points in (average of) O(n1/3) (dual) arrangements.

19

Answer

Yes, we can!

· · ·

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

Point location of n (dual) points in (average of) O(n1/3) (dual) arrangements.

19

Outline

Introduction

Approach I - Fractional Cascading

Fractional cascading in 1d lists

Fractional cascading of line arrangements

Approach II - Algebraic Decision Trees

Conclusion

20

Fractional cascading in 1d lists [Chazelle, Guibas, 1986]

Suppose we’re given a constant degree tree T of lists of size z and a query point p.

We can find all predecessors of p in time O(|T| log z) with O(|T|) binary searches.

Fractional cascading finds all predecessors of p in time O(|T|+ log z), this is
amortized O(1) per list.

21

Fractional cascading in 1d lists [Chazelle, Guibas, 1986]

Suppose we’re given a constant degree tree T of lists of size z and a query point p.

We can find all predecessors of p in time O(|T| log z) with O(|T|) binary searches.

Fractional cascading finds all predecessors of p in time O(|T|+ log z), this is
amortized O(1) per list.

21

Fractional cascading in 1d lists [Chazelle, Guibas, 1986]

Suppose we’re given a constant degree tree T of lists of size z and a query point p.

We can find all predecessors of p in time O(|T| log z) with O(|T|) binary searches.

Fractional cascading finds all predecessors of p in time O(|T|+ log z), this is
amortized O(1) per list.

21

Fractional cascading in 1d lists

Idea: Pass fraction 1/c of elements from child lists to parent lists.

Can handle queries with pointers in O(1) after an initial binary search.

22

Fractional cascading in 1d lists

Idea: Pass fraction 1/c of elements from child lists to parent lists.

Can handle queries with pointers in O(1) after an initial binary search.

22

Fractional cascading in 1d lists

Idea: Pass fraction 1/c of elements from child lists to parent lists.

Can handle queries with pointers in O(1) after an initial binary search.

22

Fractional cascading in 1d lists

Idea: Pass fraction 1/c of elements from child lists to parent lists.

Can handle queries with pointers in O(1) after an initial binary search.

22

Fractional cascading in 1d lists

Idea: Pass fraction 1/c of elements from child lists to parent lists.

Can handle queries with pointers in O(1) after an initial binary search.

22

Fractional cascading in 1d lists

Idea: Pass fraction 1/c of elements from child lists to parent lists.

Can handle queries with pointers in O(1) after an initial binary search.

22

Fractional cascading in 1d lists

Idea: Pass fraction 1/c of elements from child lists to parent lists.

Can handle queries with pointers in O(1) after an initial binary search.

22

Fractional cascading in 2D?

In 2004, Chazelle and Liu proved that fractional cascading in 2d planar
subdivisions needs Ω(N2) preprocessing.

However, not general planar subdivisions, these are arrangements of lines!

23

Fractional cascading in 2D?

In 2004, Chazelle and Liu proved that fractional cascading in 2d planar
subdivisions needs Ω(N2) preprocessing.

However, not general planar subdivisions, these are arrangements of lines!

23

Fractional cascading of line arrangements

· · ·· · ·

... ...

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

24

Fractional cascading of line arrangements

Where is our tree?

From the cutting, as they give a hierarchical tree structure!

· · ·· · ·

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

25

Fractional cascading of line arrangements

Where is our tree? From the cutting, as they give a hierarchical tree structure!

· · ·· · ·

...

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

25

Fractional cascading of line arrangements

Where is our tree? From the cutting, as they give a hierarchical tree structure!

· · ·· · ·

...

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

25

Fractional cascading of line arrangements

Where is our tree? From the cutting, as they give a hierarchical tree structure!

· · ·· · ·

...

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

25

Back to Hopcroft

· · ·

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

O(n4/3) time to do O(n4/3) point location queries!

26

Back to Hopcroft

· · ·

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

O(n4/3) time to do O(n4/3) point location queries!

26

Remarks on Fractional Cascading of Lines

Limitations of 2D fractional cascading of lines:

• Only works in 2D (relies on vertical decompositions)
• Randomized

For higher dimensions, we need a different approach.

Main idea: Easier to avoid logs in the decision tree model.

27

Remarks on Fractional Cascading of Lines

Limitations of 2D fractional cascading of lines:

• Only works in 2D (relies on vertical decompositions)
• Randomized

For higher dimensions, we need a different approach.

Main idea: Easier to avoid logs in the decision tree model.

27

Remarks on Fractional Cascading of Lines

Limitations of 2D fractional cascading of lines:

• Only works in 2D (relies on vertical decompositions)
• Randomized

For higher dimensions, we need a different approach.

Main idea: Easier to avoid logs in the decision tree model.

27

Remarks on Fractional Cascading of Lines

Limitations of 2D fractional cascading of lines:

• Only works in 2D (relies on vertical decompositions)
• Randomized

For higher dimensions, we need a different approach.

Main idea: Easier to avoid logs in the decision tree model.

27

Outline

Introduction

Approach I - Fractional Cascading

Approach II - Algebraic Decision Trees

Low depth decision trees implies faster runtimes

Sorting with Decision Trees

Conclusion

28

Low depth decision trees implies faster runtimes

Claim: If Hopcroft’s problem has O(n4/3) decision tree complexity,
there exists an O(n4/3) algorithm for Hopcroft’s problem.

T(n,n) = O
(
n4/3

log4 n

)
T
(
log3 n, log3 n

)
+ O(n4/3)

Repeating gives O(n4/3/(log log log n)4) subproblems of size b = O((log log log n)3).

We can afford to build a decision tree T because b is very small.

This is not new, mentioned in [Matoušek, 1993], useful for 3SUM and APSP.

29

Low depth decision trees implies faster runtimes

Claim: If Hopcroft’s problem has O(n4/3) decision tree complexity,
there exists an O(n4/3) algorithm for Hopcroft’s problem.

T(n,n) = O
(
n4/3

log4 n

)
T
(
log3 n, log3 n

)
+ O(n4/3)

Repeating gives O(n4/3/(log log log n)4) subproblems of size b = O((log log log n)3).

We can afford to build a decision tree T because b is very small.

This is not new, mentioned in [Matoušek, 1993], useful for 3SUM and APSP.

29

Low depth decision trees implies faster runtimes

Claim: If Hopcroft’s problem has O(n4/3) decision tree complexity,
there exists an O(n4/3) algorithm for Hopcroft’s problem.

T(n,n) = O
(
n4/3

log4 n

)
T
(
log3 n, log3 n

)
+ O(n4/3)

Repeating gives O(n4/3/(log log log n)4) subproblems of size b = O((log log log n)3).

We can afford to build a decision tree T because b is very small.

This is not new, mentioned in [Matoušek, 1993], useful for 3SUM and APSP.

29

Low depth decision trees implies faster runtimes

Claim: If Hopcroft’s problem has O(n4/3) decision tree complexity,
there exists an O(n4/3) algorithm for Hopcroft’s problem.

T(n,n) = O
(
n4/3

log4 n

)
T
(
log3 n, log3 n

)
+ O(n4/3)

Repeating gives O(n4/3/(log log log n)4) subproblems of size b = O((log log log n)3).

We can afford to build a decision tree T because b is very small.

This is not new, mentioned in [Matoušek, 1993], useful for 3SUM and APSP.

29

Low depth decision trees implies faster runtimes

Claim: If Hopcroft’s problem has O(n4/3) decision tree complexity,
there exists an O(n4/3) algorithm for Hopcroft’s problem.

T(n,n) = O
(
n4/3

log4 n

)
T
(
log3 n, log3 n

)
+ O(n4/3)

Repeating gives O(n4/3/(log log log n)4) subproblems of size b = O((log log log n)3).

We can afford to build a decision tree T because b is very small.

This is not new, mentioned in [Matoušek, 1993], useful for 3SUM and APSP.

29

Low depth decision trees implies faster runtimes

Claim: If Hopcroft’s problem has O(n4/3) decision tree complexity,
there exists an O(n4/3) algorithm for Hopcroft’s problem.

T(n,n) = O
(
n4/3

log4 n

)
T
(
log3 n, log3 n

)
+ O(n4/3)

Repeating gives O(n4/3/(log log log n)4) subproblems of size b = O((log log log n)3).

We can afford to build a decision tree T because b is very small.

This is not new, mentioned in [Matoušek, 1993], useful for 3SUM and APSP.

29

(Warmup) Sorting with decision trees [Fredman, 1976]

Problem: Given a set X = {x1, ..., xn} and a set Y = {y1, ..., yn} , sort the set:

X+ Y := {xi + yj | xi ∈ X, yj ∈ Y}

Theorem [Fredman, ’76] Sorting X+ Y can be done in O(n2) comparisons.

30

(Warmup) Sorting with decision trees [Fredman, 1976]

Problem: Given a set X = {x1, ..., xn} and a set Y = {y1, ..., yn} , sort the set:

X+ Y := {xi + yj | xi ∈ X, yj ∈ Y}

Theorem [Fredman, ’76] Sorting X+ Y can be done in O(n2) comparisons.

30

(Warmup) Sorting with decision trees [Fredman, 1976]

Problem: Given a set X = {x1, ..., xn} and a set Y = {y1, ..., yn} , sort the set:

X+ Y := {xi + yj | xi ∈ X, yj ∈ Y}

Theorem [Fredman, ’76] Sorting X+ Y can be done in O(n2) comparisons.

30

Sorting with decision trees [Fredman, 1976]

View input as x = (x1, ..., xn, y1, ..., yn) ∈ RN for N = 2n.

If we knew the outcomes of every comparison:

• xi + yj < xk + yh or
• xi + yj = xk + yh or
• xi + yj > xk + yh.

Then we would could sort X+ Y.

Each comparison is a hyperplane H in RN. It suffices to know where x is.

O(n4) such hyperplanes, can show there are O(n8n) different cells.

31

Sorting with decision trees [Fredman, 1976]

View input as x = (x1, ..., xn, y1, ..., yn) ∈ RN for N = 2n.

If we knew the outcomes of every comparison:

• xi + yj < xk + yh or
• xi + yj = xk + yh or
• xi + yj > xk + yh.

Then we would could sort X+ Y.

Each comparison is a hyperplane H in RN. It suffices to know where x is.

O(n4) such hyperplanes, can show there are O(n8n) different cells.

31

Sorting with decision trees [Fredman, 1976]

View input as x = (x1, ..., xn, y1, ..., yn) ∈ RN for N = 2n.

If we knew the outcomes of every comparison:

• xi + yj < xk + yh or
• xi + yj = xk + yh or
• xi + yj > xk + yh.

Then we would could sort X+ Y.

Each comparison is a hyperplane H in RN. It suffices to know where x is.

O(n4) such hyperplanes, can show there are O(n8n) different cells.

31

Sorting with decision trees [Fredman, 1976]

View input as x = (x1, ..., xn, y1, ..., yn) ∈ RN for N = 2n.

If we knew the outcomes of every comparison:

• xi + yj < xk + yh or
• xi + yj = xk + yh or
• xi + yj > xk + yh.

Then we would could sort X+ Y.

Each comparison is a hyperplane H in RN. It suffices to know where x is.

O(n4) such hyperplanes, can show there are O(n8n) different cells.

31

Sorting with decision trees [Fredman, 1976]

View input as x = (x1, ..., xn, y1, ..., yn) ∈ RN for N = 2n.

If we knew the outcomes of every comparison:

• xi + yj < xk + yh or
• xi + yj = xk + yh or
• xi + yj > xk + yh.

Then we would could sort X+ Y.

Each comparison is a hyperplane H in RN. It suffices to know where x is.

O(n4) such hyperplanes, can show there are O(n8n) different cells.

31

Sorting with decision trees [Fredman, 1976]

Idea: Insertion sort + weighted binary search.

We have sorted a1, ..., aℓ ∈ X+ Y. Want to insert the next element q ∈ X+ Y in.

Let Π denote the set of cells that are consistent with this ordering.

Comparing q with am and am+1 results in one of the following:

(1) We know that q lies between am and am+1.

O(n2)

(2) The number of consistent cells is halved.

O(n log n)

32

Sorting with decision trees [Fredman, 1976]

Idea: Insertion sort + weighted binary search.

We have sorted a1, ..., aℓ ∈ X+ Y. Want to insert the next element q ∈ X+ Y in.

Let Π denote the set of cells that are consistent with this ordering.

a1 a2 a3 am am+1 a`a`−1a`−2

Comparing q with am and am+1 results in one of the following:

(1) We know that q lies between am and am+1.

O(n2)

(2) The number of consistent cells is halved.

O(n log n)

32

Sorting with decision trees [Fredman, 1976]

Idea: Insertion sort + weighted binary search.

We have sorted a1, ..., aℓ ∈ X+ Y. Want to insert the next element q ∈ X+ Y in.

Let Π denote the set of cells that are consistent with this ordering.

a1 a2 a3 am am+1 a`a`−1a`−2

Comparing q with am and am+1 results in one of the following:

(1) We know that q lies between am and am+1.

O(n2)

(2) The number of consistent cells is halved.

O(n log n)

32

Sorting with decision trees [Fredman, 1976]

Idea: Insertion sort + weighted binary search.

We have sorted a1, ..., aℓ ∈ X+ Y. Want to insert the next element q ∈ X+ Y in.

Let Π denote the set of cells that are consistent with this ordering.

3

a1 a2 a3 am am+1 a`a`−1a`−2

41 392 1 79

Comparing q with am and am+1 results in one of the following:

(1) We know that q lies between am and am+1.

O(n2)

(2) The number of consistent cells is halved.

O(n log n)

32

Sorting with decision trees [Fredman, 1976]

Idea: Insertion sort + weighted binary search.

We have sorted a1, ..., aℓ ∈ X+ Y. Want to insert the next element q ∈ X+ Y in.

Let Π denote the set of cells that are consistent with this ordering.

3

a1 a2 a3 am am+1 a`a`−1a`−2

41 392 1 79

≤ |Π|
2 ≤ |Π|

2

Comparing q with am and am+1 results in one of the following:

(1) We know that q lies between am and am+1.

O(n2)

(2) The number of consistent cells is halved.

O(n log n)

32

Sorting with decision trees [Fredman, 1976]

Idea: Insertion sort + weighted binary search.

We have sorted a1, ..., aℓ ∈ X+ Y. Want to insert the next element q ∈ X+ Y in.

Let Π denote the set of cells that are consistent with this ordering.

3

a1 a2 a3 am am+1 a`a`−1a`−2

41 392 1 79

≤ |Π|
2 ≤ |Π|

2

Comparing q with am and am+1 results in one of the following:

(1) We know that q lies between am and am+1.

O(n2)

(2) The number of consistent cells is halved.

O(n log n)

32

Sorting with decision trees [Fredman, 1976]

Idea: Insertion sort + weighted binary search.

We have sorted a1, ..., aℓ ∈ X+ Y. Want to insert the next element q ∈ X+ Y in.

Let Π denote the set of cells that are consistent with this ordering.

3

a1 a2 a3 am am+1 a`a`−1a`−2

41 392 1 79

≤ |Π|
2 ≤ |Π|

2

Comparing q with am and am+1 results in one of the following:

(1) We know that q lies between am and am+1. O(n2)
(2) The number of consistent cells is halved.

O(n log n)

32

Sorting with decision trees [Fredman, 1976]

Idea: Insertion sort + weighted binary search.

We have sorted a1, ..., aℓ ∈ X+ Y. Want to insert the next element q ∈ X+ Y in.

Let Π denote the set of cells that are consistent with this ordering.

3

a1 a2 a3 am am+1 a`a`−1a`−2

41 392 1 79

≤ |Π|
2 ≤ |Π|

2

Comparing q with am and am+1 results in one of the following:

(1) We know that q lies between am and am+1. O(n2)
(2) The number of consistent cells is halved. O(n log n) 32

Generalizing Fredman’s algorithm for Hopcroft’s Problem (Sketch)

Idea: Fredman’s trick extends to point location.

Goal: Do O(n4/3) point location queries that arose from n points and n lines.

• Algebraic decision tree makes constant-degree algebraic comparisons of the
form x ∈ γ for semi-algebraic γ ∈ Γ, where |Γ| = O(nc).

• Viewed in RN, we can pre-compute arrangement A(Γ).
• In A(Γ), we get cells Π that correspond to result of comparisons.
• Milnor-Thom theorem gives |Π| := # of cells ≤ |Γ|N = nO(n).
• As we make γ-comparisons, number of cells consistent with result decreases
OR we successfully do a point location.

• To find the right γ to compare with, can use hierarchical cutting tree (and use
the weighted centroid).

33

Generalizing Fredman’s algorithm for Hopcroft’s Problem (Sketch)

Idea: Fredman’s trick extends to point location.

Goal: Do O(n4/3) point location queries that arose from n points and n lines.

• Algebraic decision tree makes constant-degree algebraic comparisons of the
form x ∈ γ for semi-algebraic γ ∈ Γ, where |Γ| = O(nc).

• Viewed in RN, we can pre-compute arrangement A(Γ).
• In A(Γ), we get cells Π that correspond to result of comparisons.
• Milnor-Thom theorem gives |Π| := # of cells ≤ |Γ|N = nO(n).
• As we make γ-comparisons, number of cells consistent with result decreases
OR we successfully do a point location.

• To find the right γ to compare with, can use hierarchical cutting tree (and use
the weighted centroid).

33

Generalizing Fredman’s algorithm for Hopcroft’s Problem (Sketch)

Idea: Fredman’s trick extends to point location.

Goal: Do O(n4/3) point location queries that arose from n points and n lines.

• Algebraic decision tree makes constant-degree algebraic comparisons of the
form x ∈ γ for semi-algebraic γ ∈ Γ, where |Γ| = O(nc).

• Viewed in RN, we can pre-compute arrangement A(Γ).
• In A(Γ), we get cells Π that correspond to result of comparisons.
• Milnor-Thom theorem gives |Π| := # of cells ≤ |Γ|N = nO(n).
• As we make γ-comparisons, number of cells consistent with result decreases
OR we successfully do a point location.

• To find the right γ to compare with, can use hierarchical cutting tree (and use
the weighted centroid).

33

Generalizing Fredman’s algorithm for Hopcroft’s Problem (Sketch)

Idea: Fredman’s trick extends to point location.

Goal: Do O(n4/3) point location queries that arose from n points and n lines.

• Algebraic decision tree makes constant-degree algebraic comparisons of the
form x ∈ γ for semi-algebraic γ ∈ Γ, where |Γ| = O(nc).

• Viewed in RN, we can pre-compute arrangement A(Γ).

• In A(Γ), we get cells Π that correspond to result of comparisons.
• Milnor-Thom theorem gives |Π| := # of cells ≤ |Γ|N = nO(n).
• As we make γ-comparisons, number of cells consistent with result decreases
OR we successfully do a point location.

• To find the right γ to compare with, can use hierarchical cutting tree (and use
the weighted centroid).

33

Generalizing Fredman’s algorithm for Hopcroft’s Problem (Sketch)

Idea: Fredman’s trick extends to point location.

Goal: Do O(n4/3) point location queries that arose from n points and n lines.

• Algebraic decision tree makes constant-degree algebraic comparisons of the
form x ∈ γ for semi-algebraic γ ∈ Γ, where |Γ| = O(nc).

• Viewed in RN, we can pre-compute arrangement A(Γ).
• In A(Γ), we get cells Π that correspond to result of comparisons.

• Milnor-Thom theorem gives |Π| := # of cells ≤ |Γ|N = nO(n).
• As we make γ-comparisons, number of cells consistent with result decreases
OR we successfully do a point location.

• To find the right γ to compare with, can use hierarchical cutting tree (and use
the weighted centroid).

33

Generalizing Fredman’s algorithm for Hopcroft’s Problem (Sketch)

Idea: Fredman’s trick extends to point location.

Goal: Do O(n4/3) point location queries that arose from n points and n lines.

• Algebraic decision tree makes constant-degree algebraic comparisons of the
form x ∈ γ for semi-algebraic γ ∈ Γ, where |Γ| = O(nc).

• Viewed in RN, we can pre-compute arrangement A(Γ).
• In A(Γ), we get cells Π that correspond to result of comparisons.
• Milnor-Thom theorem gives |Π| := # of cells ≤ |Γ|N = nO(n).

• As we make γ-comparisons, number of cells consistent with result decreases
OR we successfully do a point location.

• To find the right γ to compare with, can use hierarchical cutting tree (and use
the weighted centroid).

33

Generalizing Fredman’s algorithm for Hopcroft’s Problem (Sketch)

Idea: Fredman’s trick extends to point location.

Goal: Do O(n4/3) point location queries that arose from n points and n lines.

• Algebraic decision tree makes constant-degree algebraic comparisons of the
form x ∈ γ for semi-algebraic γ ∈ Γ, where |Γ| = O(nc).

• Viewed in RN, we can pre-compute arrangement A(Γ).
• In A(Γ), we get cells Π that correspond to result of comparisons.
• Milnor-Thom theorem gives |Π| := # of cells ≤ |Γ|N = nO(n).
• As we make γ-comparisons, number of cells consistent with result decreases
OR we successfully do a point location.

• To find the right γ to compare with, can use hierarchical cutting tree (and use
the weighted centroid).

33

Generalizing Fredman’s algorithm for Hopcroft’s Problem (Sketch)

Idea: Fredman’s trick extends to point location.

Goal: Do O(n4/3) point location queries that arose from n points and n lines.

• Algebraic decision tree makes constant-degree algebraic comparisons of the
form x ∈ γ for semi-algebraic γ ∈ Γ, where |Γ| = O(nc).

• Viewed in RN, we can pre-compute arrangement A(Γ).
• In A(Γ), we get cells Π that correspond to result of comparisons.
• Milnor-Thom theorem gives |Π| := # of cells ≤ |Γ|N = nO(n).
• As we make γ-comparisons, number of cells consistent with result decreases
OR we successfully do a point location.

• To find the right γ to compare with, can use hierarchical cutting tree (and use
the weighted centroid).

33

Outline

Introduction

Approach I - Fractional Cascading

Approach II - Algebraic Decision Trees

Conclusion

34

Conclusion

Final Remarks

• Improving runtime of Hopcroft’s problem cleans up runtimes for many
problems.

• Approach I extends to online 2D data structures for halfspace range counting.
• Approach II works for shallow cuttings.

Open Questions

• Is there an analogue of our fractional cascading approach for higher
dimensions?

• Are there other problems where we can improve decision tree complexity in
this way and result in faster algorithms?

35

Conclusion

Final Remarks

• Improving runtime of Hopcroft’s problem cleans up runtimes for many
problems.

• Approach I extends to online 2D data structures for halfspace range counting.

• Approach II works for shallow cuttings.

Open Questions

• Is there an analogue of our fractional cascading approach for higher
dimensions?

• Are there other problems where we can improve decision tree complexity in
this way and result in faster algorithms?

35

Conclusion

Final Remarks

• Improving runtime of Hopcroft’s problem cleans up runtimes for many
problems.

• Approach I extends to online 2D data structures for halfspace range counting.
• Approach II works for shallow cuttings.

Open Questions

• Is there an analogue of our fractional cascading approach for higher
dimensions?

• Are there other problems where we can improve decision tree complexity in
this way and result in faster algorithms?

35

Conclusion

Final Remarks

• Improving runtime of Hopcroft’s problem cleans up runtimes for many
problems.

• Approach I extends to online 2D data structures for halfspace range counting.
• Approach II works for shallow cuttings.

Open Questions

• Is there an analogue of our fractional cascading approach for higher
dimensions?

• Are there other problems where we can improve decision tree complexity in
this way and result in faster algorithms?

35

Conclusion

Final Remarks

• Improving runtime of Hopcroft’s problem cleans up runtimes for many
problems.

• Approach I extends to online 2D data structures for halfspace range counting.
• Approach II works for shallow cuttings.

Open Questions

• Is there an analogue of our fractional cascading approach for higher
dimensions?

• Are there other problems where we can improve decision tree complexity in
this way and result in faster algorithms?

35

Conclusion

Final Remarks

• Improving runtime of Hopcroft’s problem cleans up runtimes for many
problems.

• Approach I extends to online 2D data structures for halfspace range counting.
• Approach II works for shallow cuttings.

Open Questions

• Is there an analogue of our fractional cascading approach for higher
dimensions?

• Are there other problems where we can improve decision tree complexity in
this way and result in faster algorithms?

35

Thanks for listening!

36

	Introduction
	Definition and Motivation
	History
	Previous approaches

	Approach I - Fractional Cascading
	Fractional cascading in 1d lists
	Fractional cascading of line arrangements

	Approach II - Algebraic Decision Trees
	Low depth decision trees implies faster runtimes
	Sorting with Decision Trees

	Conclusion

