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What is Hopcroft’s problem?

Given n points and n lines, does any point lie on any line?

Given n points and n lines, how many point-line incidences are there?

Given n points and n lines, how many line-below-point pairs are there?
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Why do we care about Hopcroft’s problem?

It is related to many offline problems involving range searching.

• Offline half-space range query
• Offline simplex range query
• 2D line segment intersection counting
• 2D line segment connected components
• 3D line towering problem
• 3D vertical distance between polyhedral terrains
• 3D Bichromatic closest pair
• 3D Euclidean Minimum Spanning Tree

... and many other problems in computational geometry!
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History

Posed by Hopcroft in the 1980s - n points and n lines, any point on any line?

• O(n2) Brute force.

• O(n1.695) [Chazelle, 1986] (line segment intersection).
• O(n3/2 log1/2 n) [Hopcroft & Seidel, 1986?] (no paper).
• O(n1.412) [Cole, Sharir, Yap, 1987].
• O(n4/3+ε) [Edelsbrunner, Guibas, Sharir, 1990].
• O(n4/3 log4 n) [Edelsbrunner, Guibas, Hershberger, Seidel, Sharir, Snoeyink, Welzl 1989].
• O(n4/3 log1.78 n) [Agarwal, 1990].
• O(n4/3 log1/3 n) [Chazelle, 1993].
• O(n4/32O(log∗ n)) [Matoušek 1993].
• Ω(n4/3) [Erickson 1996] (For so-called partitioning algorithm).
• and now ...
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And now...

O(n4/3) algorithm for Hopcroft’s problem NEW!
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Extensions

It also improves the runtime of many related problems!

• Offline half-space range query [Matoušek, ’93] O(n2d/(d+1)2O(log∗ n))
• Offline simplex range query [Matoušek, ’93] O(n2d/(d+1)2O(log∗ n))
• 2D line segment intersection counting [Chazelle, ’83] O(n4/3 log1/3 n)
• 2D line segment connected components [Lopez, Thurimella, ’85] O(n4/3 log3 n)
• 3D line towering problem. [Chazelle, Edelsbrunner, Guibas, Sharir, ’94] O(n4/3+ε)

• 3D vertical distance between polyhedral terrains [↑↑↑↑↑, ’94] O(n4/3+ε)

• 3D Bichromatic closest pair [Agarwal, Edelsbrunner, Schwarzkopf, Welzl, ’93] O(n4/3 log4/3 n)
• 3D Euclidean Minimum Spanning Tree [↑↑↑↑↑, ’93] O(n4/3 log4/3 n)
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Asymmetric Hopcroft’s Problem

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

What if we have a lot more points than lines, say m > n2?

Point Location Data structure - There exists an O(n2) data structure that allows
for point location queries in O(log n) time , so T(m,n) = O(n2 +m log n).
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More lines than points

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

What if we have a lot more lines than points, say n > m2?

It would be nice if we can exchange our lines with our points.
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Point-Line Duality

Point-Line Duality - There exists a transform that takes points to lines and lines
to points that preserves incidences and above-below relationships.

p

p∗`

`∗

T(m,n) = T(n,m)
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Nearly Equal Case

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

What if we have roughly equal number of lines and points, say
√
m < n < m2?

Divide and conquer?
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2D Divide and Conquer

Cuttings - Given n lines and r < n, there exists a decomposition of R2 into O(r2)
cells each with at most nr lines crossing each cell

, and at most mr2 points are in
each cell.

We can find these 1/r-cuttings in time O(nr.
Now we can decompose the problem: T(m,n) = O(r2)T

(m
r2 ,

n
r
)
+ O(nr+m log r).
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Applying cuttings to Hopcroft’s problem [Chazelle, 1993]

Let T(m,n) be the time to solve Hopcroft’s problem with m points and n lines.

T(n,n) = O(r2)T
( n
r2 ,

n
r

)
+ O(nr+ n log r)

Choose r = n1/3.
T(n,n) = O(n2/3)T(n1/3,n2/3) + O(n4/3)

Use duality + point location: T(n1/3,n2/3) = O(n2/3 + n2/3 log n).

T(n,n) = O(n4/3 log n)

Slightly better with r = n1/3 log1/3 n to get O(n4/3 log1/3 n) [Chazelle, 1993]
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A (rederivation of) Matoušek’s n4/32O(log∗ n) time algorithm

T(m,n) = O(r2)T
(m
r2 ,

n
r

)
+ O(nr+m log r) and T(m,n) = T(n,m)

Apply our this recursion twice (with duality)!

T(n,n) = O(r4)T
( n
r3 ,

n
r3
)
+ O(nr log r)

Choose r = n1/3
log n , to make the non-recursive term O(n4/3):

T(n,n) = O
(
n4/3

log4 n

)
T
(
log3 n, log3 n

)
+ O(n4/3)

Solving this will give:
T(n,n) = O(n4/32O(log∗ n))
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Getting rid of extra factors?

Chazelle’s approach:

T(n,n) = O(n2/3)T
(
n1/3,n2/3

)
+ O(n4/3)

(Duality + point location) T
(
n1/3,n2/3

)
= O(n2/3 + n2/3log n)

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines

and O(n2/3) points.

O(n4/3) point locations queries total! Ω(log n) lower bound for doing a single
point query. Can we do this faster than O(n4/3 log n)?
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Answer

Yes, we can!

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

Point location of n (dual) points in (average of) O(n1/3) (dual) arrangements.
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Introduction

Approach I - Fractional Cascading
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Approach II - Algebraic Decision Trees
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Fractional cascading in 1d lists [Chazelle, Guibas, 1986]

Suppose we’re given a constant degree tree T of lists of size z and a query point p.

We can find all predecessors of p in time O(|T| log z) with O(|T|) binary searches.

Fractional cascading finds all predecessors of p in time O(|T|+ log z), this is
amortized O(1) per list.
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Fractional cascading in 1d lists

Idea: Pass fraction 1/c of elements from child lists to parent lists.

Can handle queries with pointers in O(1) after an initial binary search.
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Fractional cascading in 2D?

In 2004, Chazelle and Liu proved that fractional cascading in 2d planar
subdivisions needs Ω(N2) preprocessing.

However, not general planar subdivisions, these are arrangements of lines!
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Fractional cascading of line arrangements

· · ·· · ·

... ...
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Fractional cascading of line arrangements

Where is our tree?

From the cutting, as they give a hierarchical tree structure!

· · ·· · ·

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.
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Fractional cascading of line arrangements
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Back to Hopcroft

· · ·

︸ ︷︷ ︸
O(n2/3) arrangements of O(n1/3) lines and O(n2/3) points.

O(n4/3) time to do O(n4/3) point location queries!
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Remarks on Fractional Cascading of Lines

Limitations of 2D fractional cascading of lines:

• Only works in 2D (relies on vertical decompositions)
• Randomized

For higher dimensions, we need a different approach.

Main idea: Easier to avoid logs in the decision tree model.
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Low depth decision trees implies faster runtimes

Claim: If Hopcroft’s problem has O(n4/3) decision tree complexity,
there exists an O(n4/3) algorithm for Hopcroft’s problem.

T(n,n) = O
(
n4/3

log4 n

)
T
(
log3 n, log3 n

)
+ O(n4/3)

Repeating gives O(n4/3/(log log log n)4) subproblems of size b = O((log log log n)3).

We can afford to build a decision tree T because b is very small.

This is not new, mentioned in [Matoušek, 1993], useful for 3SUM and APSP.
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(Warmup) Sorting with decision trees [Fredman, 1976]

Problem: Given a set X = {x1, ..., xn} and a set Y = {y1, ..., yn} , sort the set:

X+ Y := {xi + yj | xi ∈ X, yj ∈ Y}

Theorem [Fredman, ’76] Sorting X+ Y can be done in O(n2) comparisons.
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Sorting with decision trees [Fredman, 1976]

View input as x = (x1, ..., xn, y1, ..., yn) ∈ RN for N = 2n.

If we knew the outcomes of every comparison:

• xi + yj < xk + yh or
• xi + yj = xk + yh or
• xi + yj > xk + yh.

Then we would could sort X+ Y.

Each comparison is a hyperplane H in RN. It suffices to know where x is.

O(n4) such hyperplanes, can show there are O(n8n) different cells.
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Sorting with decision trees [Fredman, 1976]

Idea: Insertion sort + weighted binary search.

We have sorted a1, ..., aℓ ∈ X+ Y. Want to insert the next element q ∈ X+ Y in.

Let Π denote the set of cells that are consistent with this ordering.

Comparing q with am and am+1 results in one of the following:

(1) We know that q lies between am and am+1.

O(n2)

(2) The number of consistent cells is halved.

O(n log n)
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Comparing q with am and am+1 results in one of the following:

(1) We know that q lies between am and am+1. O(n2)
(2) The number of consistent cells is halved. O(n log n) 32



Generalizing Fredman’s algorithm for Hopcroft’s Problem (Sketch)

Idea: Fredman’s trick extends to point location.

Goal: Do O(n4/3) point location queries that arose from n points and n lines.

• Algebraic decision tree makes constant-degree algebraic comparisons of the
form x ∈ γ for semi-algebraic γ ∈ Γ, where |Γ| = O(nc).

• Viewed in RN, we can pre-compute arrangement A(Γ).
• In A(Γ), we get cells Π that correspond to result of comparisons.
• Milnor-Thom theorem gives |Π| := # of cells ≤ |Γ|N = nO(n).
• As we make γ-comparisons, number of cells consistent with result decreases
OR we successfully do a point location.

• To find the right γ to compare with, can use hierarchical cutting tree (and use
the weighted centroid).
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Conclusion

Final Remarks

• Improving runtime of Hopcroft’s problem cleans up runtimes for many
problems.

• Approach I extends to online 2D data structures for halfspace range counting.
• Approach II works for shallow cuttings.

Open Questions

• Is there an analogue of our fractional cascading approach for higher
dimensions?

• Are there other problems where we can improve decision tree complexity in
this way and result in faster algorithms?
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Thanks for listening!
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