Halving by a Thousand Cuts or Punctures

Weak e-cuttings and e-nets for corridors

Sariel Har-Peled and Da Wei Zheng
February 14, 2023 (NYC Geometry Seminar)

University of Illinois Urbana-Champaign

Presented at SODA 2023



Cutting in Half



Cutting in Half




Cutting in Half



Cutting in Half




Cutting in Half




Cutting in Half

X
><>< ¢
X o ° X
x e o
[}
[ } [}
|| [ )
||
||




Halving problem

y X
X . X
X e
X (] [ ]
@
[ ] ®
| [ ]
|
|



Halving problem




Another view of the problem

y X
X . X
X e
e o
x.
[ ] ®
| [ ]
|
|



Another view of the problem

X
XX..
X o
°
|
u



Another view of the problem




Another view of the problem




Another view of the problem

Hitting all the bad convex sets with lines. .



The guarding problem



The guarding problem

Hitting all the bad convex sets with points. 5
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Known Results

With k colours, can view as k parallel set cover instances.
Can get an O(log n) or even O(log k) approximation?.
Not good when OPT is O(1), can we get poly OPT? YES, 5(\/OPT).

1C. Chekuri, T. Inamdar, K. Quanrud, K. Varadarajan, and Z. Zhang. Algorithms for covering
multiple submodular constraints and applications. Journal of Combinatorial Optimization, 2022.
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Issues:

Can there be many lines in L7
Size of Dp,q?
Separation oracle?
Rounding the final solution?
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e-nets and random sampling

Let X be a set of points. Let 7 be a set of ranges (e.g. halfspaces).
Definition

A subset S C X is an e-net for X (against H), if for every range h € H where
|X N h| > g|X|, there is some s € S that lies in h (i.e. sNh# D).

Theorem (Haussler and Welzl ’'82)

Let (X,H) be a range space of VC dimension d, and suppose that 0 < & <1 and
0 < § < 1. Then a random sample of size Q(¢ *(log 6! + dloge™1)) is a e-net for X
with probability at least 1 — .



e-cuttings

Definition
Given a set of n lines £, and 0 < € < 1, an e-cutting of £ is a partition of RY into
connected regions where every region intersects at most en lines of L.
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Definition
Given a set of n lines £, and 0 < € < 1, an e-cutting of £ is a partition of RY into
connected regions where every region intersects at most en lines of L.

Theorem (Matousek '91, Chazelle '93)
For any set of lines £ in RY, there exist cuttings of size O(1/e%).
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Weak c-cuttings

Definition
For a set P of n lines in R?, a set £ of lines is a weak e-cutting if for every convex
region D where |D M P| > en intersects at least one line of L.
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Weak c-cuttings

Definition
For a set P of n lines in R?, a set £ of lines is a weak e-cutting if for every convex
region D where |D M P| > en intersects at least one line of L.

Theorem ~
For any n lines in R? and € > 0, there exists a weak e-cutting of size O (1/53/2) .
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Definition
For a set P of n points in R2, a set S C R? is a weak e-net for convex sets if for every
convex region D where |D N P| > en has nonempty intersection with S.



Weak c-nets for convex sets

Definition
For a set P of n points in R2, a set S C R? is a weak e-net for convex sets if for every

convex region D where |D N P| > en has nonempty intersection with S.

Theorem (Barany et al '90, Alon et al '92, Rubin ’18)
For any n points in R? and e, o > 0, there exists a weak c-net of size O (1/53/2+a) .



Weak c-cuttings (Again)

Definition
For a set P of n lines in R?, a set £ of lines is a weak e-cutting if for every convex
region D where |D M P| > en intersects at least one line of L.

Theorem B
For any n lines in R? and = > 0, exists a weak e-cutting of size O (1/¢%/2).

/ o
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An observation about weak e-cuttings.
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Corridors

Definition
Given a set of lines £, the corridor of L is the region between the upper and lower

envelope of L.
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Corridors

Definition
Given a set of lines £, the corridor of L is the region between the upper and lower

envelope of L.




Projective Duality for Convex Hulls

Projective Duality - Transform that takes points to lines and lines to points that
preserves incidences and above-below relationships.

g*
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Line intersecting convex hull — Point in corridor



Weak c-cuttings = Weak c-net for corridors

—_—
Theorem B
For any n lines in R? and & > 0, exists a weak c-cutting of size O (1/&3/2) .
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Weak c-cuttings = Weak c-net for corridors

—_—
Theorem

For any n lines in R? and & > 0, exists a weak e-cutting of size O (1/£3/?).

Theorem B
For any n points in R? and € > 0, exists a weak e-net for corridors of size O (1/53/2) .
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Warmup - Weak e-cuttings of size O(1/¢?)

Theorem
For any n lines in R? and € > 0, exists a weak e-cutting of size O (1/52) .

/ .
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Theorem
For any n lines in R? and € > 0, exists a weak e-cutting of size O (1/52) .

O(1/e) sample

O(1/£?) vertical lines
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Weak c-cuttings of size 5(1/53/2)
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Weak c-cuttings of size O(1/2%/?)

Theorem B
For any n lines in R? and € > 0, exists a weak e-cutting of size O (1/53/2) .

O(1/£%/?) sample

Regions with < 5(1/51/2)
sides are good
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Weak c-cuttings of size O(1/2%/?)

Theorem B
For any n lines in R? and € > 0, exists a weak e-cutting of size O (1/53/2) .

O(1/£%/?) sample

Regions > O(1/£'/?)1
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Weak c-cuttings of size O(1/2%/?)

Theorem B
For any n lines in R? and € > 0, exists a weak e-cutting of size O (1/53/2) .
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Weak c-cuttings of size O(1/2%/?)

Theorem B
For any n lines in R? and € > 0, exists a weak e-cutting of size O (1/53/2) .

O(1/£%/?) sample

Regions >~5(1/51/2)?
Chop with O(1/&%/?) lines
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Bounding number of large faces

Theorem (Clarkson, Edelsbrunner, Guibas, Sharir, Welzl "90)

The complexity of i cells in an arrangement of n lines is O(n?*/3i%/3 4 n +i).

Corollary
For an arrangement of n lines in the plane, let c; be the complexity of the ith face of

the arrangement in decreasing order of the complexity of the faces.

Then ¢; = O(n?/3/i*/3 4+ n/i +1).

Let r = 1/e. When n= O(r3?2) and i = O(r3/?), ¢; = O(r*/?).
For the first i faces, the total complexity is O(r?).

Cut each big faces into parts of size O(r'/2), then we need to make O(r3/2) cuts.

20



Weak c-cuttings of size O(1/2%/?)

Theorem B
For any n lines in R? and € > 0, exists a weak e-cutting of size O (1/53/2) .
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Regions > O(1/£'/2)?
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Theorem B
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Weak c-cuttings of size 5(1/53/2)

Theorem B
For any n lines in R? and € > 0, exists a weak e-cutting of size O (1/53/2) .

O(1/£%/?) sample

Reduce all faces to size 5(1/53/2)
by O(1/£3/2) lines

./ /)



Back to solving the halving problem

22



The Linear Program
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The Linear Program

Issues:

Can there be many lines in L?
Size of Dp,q?
Separation oracle?
Rounding the final solution?
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Rounding Problem
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solution L of size t to the problem.

sz = OPT

lel

Z xp > 1 Vo € Dpad
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Rounding Problem

Rounding Problem: Find a NEW set of lines L’ that partition the plane such that:

e Every convex polygon that intersects lines of L with weight > 1 is hit by L’.
or equivalently:
e Every face of the arrangement of L’ intersects lines of L with weight < 1

Suppose we had a (possibly fractional)
solution L of size t to the problem.

> x = OPT

lel

0.3

Z xp > 1 Vo € Dpad

0.5 24
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Solving the LP

Guess t = O(OPT).
Ellipsoid algorithm asks if x with |x| > t is feasible.
We construct a weighted weak e-cutting of x of size at most 5(OPT3/2).

o=

We check each face of the cutting (which must have weight < 1 of the lines of x)

against the original point set. One of the following happens:

(a) It is a halving set for each coloured point set. (Done!)

(b) We find a convex face of the arrangment that has too many points of some colour,
and it also has weight < 1 of the lines of x. (Separation!)
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Consequences of weak c-cuttings

Consequences of weak c-cuttings
e We can round the LP (and solve the halving problem) to get a solution of size

O(OPT3/2),

e c-nets for corridors of size O(1/£3/2).
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Conclusion

Main Contributions

e Solving the halving problem reduces to finding a good weak e-cutting.
e Solving the guarding problem reduces to finding a good weak &-net.

e Weak e-cuttings and weak e-nets for corridors of size O(1/£3/2) can be
constructed.

Open Questions

e Other applications for weak e-cuttings?
e Construct better weak e-cuttings in R? for d > 2, anything o(n9).

e Improve the exponent of 3/2.

27



Thanks for listening!
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Reducing the number of lines

Idea: Sample points of each colour and only consider lines passing through pairs of
sampled points.
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A brief aside about projective duality
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Projective Duality

Projective Duality - Transform that takes points to lines and lines to points that
preserves incidences and above-below relationships.

g*
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Reducing the number of lines

Idea: Sample points of each colour and only consider lines passing through pairs of
sampled points.
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