Halving by a Thousand Cuts or Punctures

Weak $\varepsilon\text{-cuttings}$ and $\varepsilon\text{-nets}$ for corridors

Sariel Har-Peled and **Da Wei Zheng** February 14, 2023 (NYC Geometry Seminar)

University of Illinois Urbana-Champaign

Presented at SODA 2023

Halving problem

Halving problem

Hitting all the bad convex sets with lines.

The guarding problem

The guarding problem

Hitting all the bad convex sets with points.

¹C. Chekuri, T. Inamdar, K. Quanrud, K. Varadarajan, and Z. Zhang. **Algorithms for covering multiple submodular constraints and applications**. *Journal of Combinatorial Optimization*, 2022.

¹C. Chekuri, T. Inamdar, K. Quanrud, K. Varadarajan, and Z. Zhang. **Algorithms for covering multiple submodular constraints and applications**. *Journal of Combinatorial Optimization*, 2022.

¹C. Chekuri, T. Inamdar, K. Quanrud, K. Varadarajan, and Z. Zhang. **Algorithms for covering multiple submodular constraints and applications**. *Journal of Combinatorial Optimization*, 2022.

$$egin{aligned} \min_{L} \sum_{\ell \in L} x_\ell \ &1 \geq x_\ell \geq 0 \ &\sum_{\ell \in L \sqcap \sigma} x_\ell \geq 1 \quad orall \sigma \in \mathcal{D}_{bad} \end{aligned}$$

$$egin{aligned} \min_{L} \sum_{\ell \in L} x_\ell \ & 1 \geq x_\ell \geq 0 \ & \sum_{\ell \in L \sqcap \sigma} x_\ell \geq 1 \quad orall \sigma \in \mathcal{D}_{bad} \end{aligned}$$

Issues:

Can there be many lines in L?

$$egin{aligned} \min_{L} \sum_{\ell \in L} x_\ell \ & 1 \geq x_\ell \geq 0 \ & \sum_{\ell \in L \sqcap \sigma} x_\ell \geq 1 \quad orall \sigma \in \mathcal{D}_{bad} \end{aligned}$$

Issues:

Can there be many lines in L? Size of \mathcal{D}_{bad} ?

$$egin{aligned} \min_{L} \sum_{\ell \in L} x_\ell \ &1 \geq x_\ell \geq 0 \ &\sum_{\ell \in L \sqcap \sigma} x_\ell \geq 1 \quad orall \sigma \in \mathcal{D}_{bad} \end{aligned}$$

Issues:

Can there be many lines in L? Size of \mathcal{D}_{bad} ? Separation oracle?

$$egin{aligned} \min_{L} \sum_{\ell \in L} x_\ell \ &1 \geq x_\ell \geq 0 \ &\sum_{\ell \in L \sqcap \sigma} x_\ell \geq 1 \quad orall \sigma \in \mathcal{D}_{bad} \end{aligned}$$

Issues:

Can there be many lines in L? Size of \mathcal{D}_{bad} ? Separation oracle? Rounding the final solution?

ε -nets and ε -cuttings

Let X be a set of points. Let \mathcal{H} be a set of ranges (e.g. halfspaces).

Let X be a set of points. Let \mathcal{H} be a set of ranges (e.g. halfspaces).

Definition

A subset $S \subseteq X$ is an ε -net for X (against \mathcal{H}), if for every range $h \in \mathcal{H}$ where $|X \cap h| \ge \varepsilon |X|$, there is some $s \in S$ that lies in h (i.e. $s \cap h \neq \emptyset$).

Let X be a set of points. Let \mathcal{H} be a set of ranges (e.g. halfspaces).

Definition

A subset $S \subseteq X$ is an ε -net for X (against \mathcal{H}), if for every range $h \in \mathcal{H}$ where $|X \cap h| \ge \varepsilon |X|$, there is some $s \in S$ that lies in h (i.e. $s \cap h \neq \emptyset$).

Theorem (Haussler and Welzl '82)

Let (X, \mathcal{H}) be a range space of VC dimension d, and suppose that $0 < \varepsilon \leq 1$ and $0 < \delta < 1$. Then a random sample of size $\Omega(\varepsilon^{-1}(\log \delta^{-1} + d \log \varepsilon^{-1}))$ is a ε -net for X with probability at least $1 - \delta$.

ε -cuttings

Definition

Given a set of *n* lines \mathcal{L} , and $0 < \varepsilon < 1$, an ε -cutting of \mathcal{L} is a partition of \mathbb{R}^d into connected regions where every region intersects at most εn lines of \mathcal{L} .

ε -cuttings

Definition

Given a set of *n* lines \mathcal{L} , and $0 < \varepsilon < 1$, an ε -cutting of \mathcal{L} is a partition of \mathbb{R}^d into connected regions where every region intersects at most εn lines of \mathcal{L} .

ε -cuttings

Definition

Given a set of *n* lines \mathcal{L} , and $0 < \varepsilon < 1$, an ε -cutting of \mathcal{L} is a partition of \mathbb{R}^d into connected regions where every region intersects at most εn lines of \mathcal{L} .

Theorem (Matoušek '91, Chazelle '93) For any set of lines \mathcal{L} in \mathbb{R}^d , there exist cuttings of size $O(1/\varepsilon^d)$.

Weak ε -cuttings

Definition

For a set P of n lines in \mathbb{R}^2 , a set \mathcal{L} of lines is a weak ε -cutting if for every convex region D where $|D \sqcap P| \ge \varepsilon n$ intersects at least one line of \mathcal{L} .

Weak ε -cuttings

Definition

For a set P of n lines in \mathbb{R}^2 , a set \mathcal{L} of lines is a weak ε -cutting if for every convex region D where $|D \sqcap P| \ge \varepsilon n$ intersects at least one line of \mathcal{L} .

Theorem

Weak ε -nets for convex sets

Weak $\overline{\varepsilon}$ -nets for convex sets

Definition

For a set P of n points in \mathbb{R}^2 , a set $S \subset \mathbb{R}^2$ is a weak ε -net for convex sets if for every convex region D where $|D \cap P| \ge \varepsilon n$ has nonempty intersection with S.

Definition

For a set P of n points in \mathbb{R}^2 , a set $S \subset \mathbb{R}^2$ is a weak ε -net for convex sets if for every convex region D where $|D \cap P| \ge \varepsilon n$ has nonempty intersection with S.

Theorem (Bárány et al '90, Alon et al '92, Rubin '18) For any n points in \mathbb{R}^2 and $\varepsilon, \alpha > 0$, there exists a weak ε -net of size $O(1/\varepsilon^{3/2+\alpha})$.

Weak ε -cuttings (Again)

Definition

For a set P of n lines in \mathbb{R}^2 , a set \mathcal{L} of lines is a weak ε -cutting if for every convex region D where $|D \sqcap P| \ge \varepsilon n$ intersects at least one line of \mathcal{L} .

Theorem

An observation about weak ε -cuttings.

Corridors

Definition

Given a set of lines \mathcal{L} , the corridor of \mathcal{L} is the region between the upper and lower envelope of \mathcal{L} .

Corridors

Definition

Given a set of lines \mathcal{L} , the corridor of \mathcal{L} is the region between the upper and lower envelope of \mathcal{L} .

Weak ε -cuttings \Rightarrow Weak ε -net for corridors

Theorem

Weak ε -cuttings \Rightarrow Weak ε -net for corridors

Theorem

Weak ε -cuttings \Rightarrow Weak ε -net for corridors

Theorem

For any n lines in \mathbb{R}^2 and $\varepsilon > 0$, exists a weak ε -cutting of size $\widetilde{O}(1/\varepsilon^{3/2})$.

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem (Clarkson, Edelsbrunner, Guibas, Sharir, Welzl '90)

The complexity of *i* cells in an arrangement of *n* lines is $O(n^{2/3}i^{2/3} + n + i)$.

Theorem (Clarkson, Edelsbrunner, Guibas, Sharir, Welzl '90)

The complexity of *i* cells in an arrangement of *n* lines is $O(n^{2/3}i^{2/3} + n + i)$.

Corollary

For an arrangement of n lines in the plane, let c_i be the complexity of the *i*th face of the arrangement in decreasing order of the complexity of the faces.

Then $c_i = O(n^{2/3}/i^{1/3} + n/i + 1)$.

Theorem (Clarkson, Edelsbrunner, Guibas, Sharir, Welzl '90)

The complexity of *i* cells in an arrangement of *n* lines is $O(n^{2/3}i^{2/3} + n + i)$.

Corollary

For an arrangement of n lines in the plane, let c_i be the complexity of the *i*th face of the arrangement in decreasing order of the complexity of the faces.

Then $c_i = O(n^{2/3}/i^{1/3} + n/i + 1)$.

Let $r = 1/\varepsilon$. When $n = \widetilde{O}(r^{3/2})$ and $i = \widetilde{O}(r^{3/2})$,

Theorem (Clarkson, Edelsbrunner, Guibas, Sharir, Welzl '90)

The complexity of *i* cells in an arrangement of *n* lines is $O(n^{2/3}i^{2/3} + n + i)$.

Corollary

For an arrangement of n lines in the plane, let c_i be the complexity of the *i*th face of the arrangement in decreasing order of the complexity of the faces.

Then $c_i = O(n^{2/3}/i^{1/3} + n/i + 1)$.

Let $r = 1/\varepsilon$. When $n = \widetilde{O}(r^{3/2})$ and $i = \widetilde{O}(r^{3/2})$, $c_i = \widetilde{O}(r^{1/2})$.

For the first *i* faces, the total complexity is $\widetilde{O}(r^2)$.

Theorem (Clarkson, Edelsbrunner, Guibas, Sharir, Welzl '90)

The complexity of *i* cells in an arrangement of *n* lines is $O(n^{2/3}i^{2/3} + n + i)$.

Corollary

For an arrangement of n lines in the plane, let c_i be the complexity of the *i*th face of the arrangement in decreasing order of the complexity of the faces.

Then $c_i = O(n^{2/3}/i^{1/3} + n/i + 1)$.

Let $r = 1/\varepsilon$. When $n = \widetilde{O}(r^{3/2})$ and $i = \widetilde{O}(r^{3/2})$, $c_i = \widetilde{O}(r^{1/2})$.

For the first *i* faces, the total complexity is $\widetilde{O}(r^2)$.

Cut each big faces into parts of size $\widetilde{O}(r^{1/2})$, then we need to make $\widetilde{O}(r^{3/2})$ cuts.
Weak ε -cuttings of size $\widetilde{O}(1/\varepsilon^{3/2})$

Theorem

For any n lines in \mathbb{R}^2 and $\varepsilon > 0$, exists a weak ε -cutting of size $\widetilde{O}(1/\varepsilon^{3/2})$.

Weak ε -cuttings of size $\widetilde{O}(1/\varepsilon^{3/2})$

Theorem

For any n lines in \mathbb{R}^2 and $\varepsilon > 0$, exists a weak ε -cutting of size $\widetilde{O}(1/\varepsilon^{3/2})$.

Weak ε -cuttings of size $\widetilde{O}(1/\varepsilon^{3/2})$

Theorem

For any n lines in \mathbb{R}^2 and $\varepsilon > 0$, exists a weak ε -cutting of size $\widetilde{O}(1/\varepsilon^{3/2})$.

Back to solving the halving problem

The Linear Program

$$egin{aligned} \min_{L} \sum_{\ell \in L} x_\ell \ & 1 \geq x_\ell \geq 0 \ & \sum_{\ell \in L \sqcap \sigma} x_\ell \geq 1 \quad orall \sigma \in \mathcal{D}_{bad} \end{aligned}$$

r

The Linear Program

$$egin{aligned} \min_{L} \sum_{\ell \in L} x_\ell \ & 1 \geq x_\ell \geq 0 \ & \sum_{\ell \in L \sqcap \sigma} x_\ell \geq 1 \quad orall \sigma \in \mathcal{D}_{bad} \end{aligned}$$

Issues:

Can there be many lines in L? Size of \mathcal{D}_{bad} ? Separation oracle? Rounding the final solution? Suppose we had a (possibly fractional) solution L of size t to the problem.

$$\sum_{\ell \in L} x_{\ell} = OPT$$

 $1 \ge x_{\ell} \ge 0$
 $\sum_{\ell \in L \sqcap \sigma} x_{\ell} \ge 1$ $orall \sigma \in \mathcal{D}_{bad}$

Rounding Problem: Find a NEW set of lines L' that partition the plane such that:

Rounding Problem

Rounding Problem: Find a NEW set of lines L' that partition the plane such that:

• Every convex polygon that intersects lines of L with weight ≥ 1 is hit by L'.

Rounding Problem

Rounding Problem: Find a NEW set of lines L' that partition the plane such that:

- Every convex polygon that intersects lines of L with weight ≥ 1 is hit by L'. or equivalently:
- Every face of the arrangement of L' intersects lines of L with weight < 1

Rounding Problem

Rounding Problem: Find a NEW set of lines L' that partition the plane such that:

- Every convex polygon that intersects lines of L with weight ≥ 1 is hit by L'. or equivalently:
- Every face of the arrangement of L' intersects lines of L with weight < 1

1. Guess t = O(OPT).

- 1. Guess t = O(OPT).
- 2. Ellipsoid algorithm asks if **x** with $|\mathbf{x}| \ge t$ is feasible.

- 1. Guess t = O(OPT).
- 2. Ellipsoid algorithm asks if **x** with $|\mathbf{x}| \ge t$ is feasible.
- 3. We construct a weighted weak ε -cutting of **x** of size at most $\widetilde{O}(OPT^{3/2})$.

- 1. Guess t = O(OPT).
- 2. Ellipsoid algorithm asks if **x** with $|\mathbf{x}| \ge t$ is feasible.
- 3. We construct a weighted weak ε -cutting of **x** of size at most $\widetilde{O}(OPT^{3/2})$.
- 4. We check each face of the cutting (which must have weight < 1 of the lines of x) against the original point set. One of the following happens:
 - (a) It is a halving set for each coloured point set. (Done!)
 - (b) We find a convex face of the arrangment that has too many points of some colour, and it also has weight < 1 of the lines of x. (Separation!)

Consequences of weak ε -cuttings

Consequences of weak $\varepsilon\text{-cuttings}$

• We can round the LP (and solve the halving problem) to get a solution of size $\widetilde{O}(OPT^{3/2})$.

Consequences of weak ε -cuttings

- We can round the LP (and solve the halving problem) to get a solution of size $\widetilde{O}(OPT^{3/2})$.
- ε -nets for corridors of size $\widetilde{O}(1/\varepsilon^{3/2})$.

Main Contributions

Main Contributions

• Solving the halving problem reduces to finding a good weak ε -cutting.

Main Contributions

- Solving the halving problem reduces to finding a good weak ε -cutting.
- Solving the guarding problem reduces to finding a good weak ε -net.

Main Contributions

- Solving the halving problem reduces to finding a good weak $\varepsilon\text{-cutting.}$
- Solving the guarding problem reduces to finding a good weak ε -net.
- Weak ε -cuttings and weak ε -nets for corridors of size $\widetilde{O}(1/\varepsilon^{3/2})$ can be constructed.

Main Contributions

- Solving the halving problem reduces to finding a good weak $\varepsilon\text{-cutting.}$
- Solving the guarding problem reduces to finding a good weak $\varepsilon\text{-net}.$
- Weak ε -cuttings and weak ε -nets for corridors of size $\widetilde{O}(1/\varepsilon^{3/2})$ can be constructed.

Open Questions

Main Contributions

- Solving the halving problem reduces to finding a good weak ε -cutting.
- Solving the guarding problem reduces to finding a good weak ε -net.
- Weak ε -cuttings and weak ε -nets for corridors of size $\widetilde{O}(1/\varepsilon^{3/2})$ can be constructed.

Open Questions

• Other applications for weak *ε*-cuttings?

Main Contributions

- Solving the halving problem reduces to finding a good weak $\varepsilon\text{-cutting.}$
- Solving the guarding problem reduces to finding a good weak ε -net.
- Weak ε -cuttings and weak ε -nets for corridors of size $\widetilde{O}(1/\varepsilon^{3/2})$ can be constructed.

Open Questions

- Other applications for weak *ε*-cuttings?
- Construct better weak ε -cuttings in \mathbb{R}^d for d > 2, anything $o(n^d)$.

Main Contributions

- Solving the halving problem reduces to finding a good weak $\varepsilon\text{-cutting.}$
- Solving the guarding problem reduces to finding a good weak ε -net.
- Weak ε -cuttings and weak ε -nets for corridors of size $\widetilde{O}(1/\varepsilon^{3/2})$ can be constructed.

Open Questions

- Other applications for weak ε -cuttings?
- Construct better weak ε -cuttings in \mathbb{R}^d for d > 2, anything $o(n^d)$.
- Improve the exponent of 3/2.

Thanks for listening!

Reducing the number of lines

Idea: Sample points of each colour and only consider lines passing through pairs of sampled points.

Reducing the number of lines

Idea: Sample points of each colour and only consider lines passing through pairs of sampled points.

A brief aside about projective duality

Projective Duality

Projective Duality for Convex Hulls

Projective Duality for Convex Hulls

Projective Duality for Convex Hulls

Reducing the number of lines

Idea: Sample points of each colour and only consider lines passing through pairs of sampled points.

