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Another view of the problem

Hitting all the bad convex sets with lines.
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The guarding problem

Hitting all the bad convex sets with points.
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The guarding problem

Hitting all the bad convex sets with points. 5



Known Results

With k colours, can view as k parallel set cover instances.

Can get an O(log n) or even O(log k) approximation1.

Not good when OPT is O(1), can we get poly OPT? YES, Õ(
√
OPT).

1C. Chekuri, T. Inamdar, K. Quanrud, K. Varadarajan, and Z. Zhang. Algorithms for covering

multiple submodular constraints and applications. Journal of Combinatorial Optimization, 2022.
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The Linear Program

min
L

∑
ℓ∈L

xℓ

1 ≥ xℓ ≥ 0∑
ℓ∈L⊓σ

xℓ ≥ 1 ∀σ ∈ Dbad

Issues:

Can there be many lines in L?

Size of Dbad?

Separation oracle?

Rounding the final solution?
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ε-nets and ε-cuttings
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ε-nets and random sampling

Let X be a set of points. Let H be a set of ranges (e.g. halfspaces).

Definition

A subset S ⊆ X is an ε-net for X (against H), if for every range h ∈ H where

|X ∩ h| ≥ ε|X |, there is some s ∈ S that lies in h (i.e. s ∩ h ̸= ∅).

Theorem (Haussler and Welzl ’82)

Let (X ,H) be a range space of VC dimension d, and suppose that 0 < ε ≤ 1 and

0 < δ < 1. Then a random sample of size Ω(ε−1(log δ−1 + d log ε−1)) is a ε-net for X

with probability at least 1− δ.
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ε-cuttings

Definition
Given a set of n lines L, and 0 < ε < 1, an ε-cutting of L is a partition of Rd into

connected regions where every region intersects at most εn lines of L.

Theorem (Matoušek ’91, Chazelle ’93)
For any set of lines L in Rd , there exist cuttings of size O(1/εd).
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Weak ε-cuttings

Definition
For a set P of n lines in R2, a set L of lines is a weak ε-cutting if for every convex

region D where |D ⊓ P| ≥ εn intersects at least one line of L.

Theorem
For any n lines in R2 and ε > 0, there exists a weak ε-cutting of size Õ

(
1/ε3/2

)
.

11



Weak ε-cuttings

Definition
For a set P of n lines in R2, a set L of lines is a weak ε-cutting if for every convex

region D where |D ⊓ P| ≥ εn intersects at least one line of L.

Theorem
For any n lines in R2 and ε > 0, there exists a weak ε-cutting of size Õ
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Weak ε-nets for convex sets

Definition
For a set P of n points in R2, a set S ⊂ R2 is a weak ε-net for convex sets if for every

convex region D where |D ∩ P| ≥ εn has nonempty intersection with S .

Theorem (Bárány et al ’90, Alon et al ’92, Rubin ’18)
For any n points in R2 and ε, α > 0, there exists a weak ε-net of size O

(
1/ε3/2+α

)
.
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Weak ε-cuttings (Again)

Definition
For a set P of n lines in R2, a set L of lines is a weak ε-cutting if for every convex

region D where |D ⊓ P| ≥ εn intersects at least one line of L.

Theorem
For any n lines in R2 and ε > 0, exists a weak ε-cutting of size Õ

(
1/ε3/2

)
.

< εn
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An observation about weak ε-cuttings.
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Corridors

Definition
Given a set of lines L, the corridor of L is the region between the upper and lower

envelope of L.
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Projective Duality for Convex Hulls

Projective Duality - Transform that takes points to lines and lines to points that

preserves incidences and above-below relationships.

p

p∗`

`∗

Line intersecting convex hull → Point in corridor
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Weak ε-cuttings ⇒ Weak ε-net for corridors

Theorem
For any n lines in R2 and ε > 0, exists a weak ε-cutting of size Õ

(
1/ε3/2

)
.

Theorem
For any n points in R2 and ε > 0, exists a weak ε-net for corridors of size Õ

(
1/ε3/2

)
.
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(
1/ε3/2

)
.

17



Weak ε-cuttings ⇒ Weak ε-net for corridors

Theorem
For any n lines in R2 and ε > 0, exists a weak ε-cutting of size Õ
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Warmup - Weak ε-cuttings of size O(1/ε2)

Theorem
For any n lines in R2 and ε > 0, exists a weak ε-cutting of size O

(
1/ε2

)
.

< εn
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Warmup - Weak ε-cuttings of size O(1/ε2)

Theorem
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)
.

O(1/ε) sample
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Weak ε-cuttings of size Õ(1/ε3/2)

Theorem
For any n lines in R2 and ε > 0, exists a weak ε-cutting of size Õ

(
1/ε3/2

)
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Theorem
For any n lines in R2 and ε > 0, exists a weak ε-cutting of size Õ
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Bounding number of large faces

Theorem (Clarkson, Edelsbrunner, Guibas, Sharir, Welzl ’90)

The complexity of i cells in an arrangement of n lines is O(n2/3i2/3 + n + i).

Corollary

For an arrangement of n lines in the plane, let ci be the complexity of the ith face of

the arrangement in decreasing order of the complexity of the faces.

Then ci = O(n2/3/i1/3 + n/i + 1).

Let r = 1/ε. When n = Õ(r3/2) and i = Õ(r3/2), ci = Õ(r1/2).

For the first i faces, the total complexity is Õ(r2).

Cut each big faces into parts of size Õ(r1/2), then we need to make Õ(r3/2) cuts.

20
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Weak ε-cuttings of size Õ(1/ε3/2)

Theorem
For any n lines in R2 and ε > 0, exists a weak ε-cutting of size Õ

(
1/ε3/2

)
.

Õ(1/ε3/2) sample

Regions > Õ(1/ε1/2)?
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For any n lines in R2 and ε > 0, exists a weak ε-cutting of size Õ
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)
.
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Reduce all faces to size Õ(1/ε3/2)
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Back to solving the halving problem
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The Linear Program

min
L

∑
ℓ∈L

xℓ

1 ≥ xℓ ≥ 0∑
ℓ∈L⊓σ

xℓ ≥ 1 ∀σ ∈ Dbad

Issues:

Can there be many lines in L?

Size of Dbad?

Separation oracle?

Rounding the final solution?
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Rounding Problem

Rounding Problem: Find a NEW set of lines L′ that partition the plane such that:

• Every convex polygon that intersects lines of L with weight ≥ 1 is hit by L′.

or equivalently:

• Every face of the arrangement of L′ intersects lines of L with weight < 1

Suppose we had a (possibly fractional)

solution L of size t to the problem.∑
ℓ∈L

xℓ = OPT

1 ≥ xℓ ≥ 0∑
ℓ∈L⊓σ

xℓ ≥ 1 ∀σ ∈ Dbad
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Solving the LP

1. Guess t = O(OPT ).

2. Ellipsoid algorithm asks if x with |x| ≥ t is feasible.

3. We construct a weighted weak ε-cutting of x of size at most Õ(OPT 3/2).

4. We check each face of the cutting (which must have weight < 1 of the lines of x)
against the original point set. One of the following happens:

(a) It is a halving set for each coloured point set. (Done!)

(b) We find a convex face of the arrangment that has too many points of some colour,

and it also has weight < 1 of the lines of x. (Separation!)

25
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Consequences of weak ε-cuttings

Consequences of weak ε-cuttings

• We can round the LP (and solve the halving problem) to get a solution of size

Õ(OPT 3/2).

• ε-nets for corridors of size Õ(1/ε3/2).
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26



Consequences of weak ε-cuttings

Consequences of weak ε-cuttings

• We can round the LP (and solve the halving problem) to get a solution of size
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26



Conclusion

Main Contributions

• Solving the halving problem reduces to finding a good weak ε-cutting.

• Solving the guarding problem reduces to finding a good weak ε-net.

• Weak ε-cuttings and weak ε-nets for corridors of size Õ(1/ε3/2) can be

constructed.

Open Questions

• Other applications for weak ε-cuttings?

• Construct better weak ε-cuttings in Rd for d > 2, anything o(nd).

• Improve the exponent of 3/2.
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constructed.

Open Questions

• Other applications for weak ε-cuttings?

• Construct better weak ε-cuttings in Rd for d > 2, anything o(nd).

• Improve the exponent of 3/2.

27



Conclusion

Main Contributions

• Solving the halving problem reduces to finding a good weak ε-cutting.

• Solving the guarding problem reduces to finding a good weak ε-net.

• Weak ε-cuttings and weak ε-nets for corridors of size Õ(1/ε3/2) can be
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constructed.

Open Questions

• Other applications for weak ε-cuttings?

• Construct better weak ε-cuttings in Rd for d > 2, anything o(nd).

• Improve the exponent of 3/2.

27



Conclusion

Main Contributions

• Solving the halving problem reduces to finding a good weak ε-cutting.

• Solving the guarding problem reduces to finding a good weak ε-net.

• Weak ε-cuttings and weak ε-nets for corridors of size Õ(1/ε3/2) can be
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Thanks for listening!
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Reducing the number of lines

Idea: Sample points of each colour and only consider lines passing through pairs of

sampled points.
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A brief aside about projective duality
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Projective Duality

Projective Duality - Transform that takes points to lines and lines to points that

preserves incidences and above-below relationships.

p

p∗`

`∗
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Projective Duality for Convex Hulls

Projective Duality - Transform that takes points to lines and lines to points that

preserves incidences and above-below relationships.
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