Faster submodular optimization for several matroids

Using dynamic data structures to speed up optimization problems

Monika Henzinger (ISTA) Paul Liu (Stanford) Jan Vondrák (Stanford) **Da Wei Zheng** (UIUC) July 14, 2023

ICALP 2023, Paderborn, Germany

For a set \mathcal{N} , a set function $f : 2^{\mathcal{N}}$ is **submodular** if for any sets S and T:

$$f(S) + f(T) \ge f(S + T) + f(S - T)$$

We only consider monotone submodular functions.

 $f(S) \leq f(T)$ for any sets $S \subseteq T$

We assume we have an oracle that computes f.

Matroid

Matroids are set system $\mathcal{M} = (\mathcal{N}, \mathcal{I})$ where $\mathcal{I} \subseteq 2^{\mathcal{N}}$.

A set $S \in \mathcal{I}$ is said to be **independent**.

Independent sets satisfy two properties:

Matroid

Matroids are set system $\mathcal{M} = (\mathcal{N}, \mathcal{I})$ where $\mathcal{I} \subseteq 2^{\mathcal{N}}$.

A set $S \in \mathcal{I}$ is said to be **independent**.

Independent sets satisfy two properties:

1. Downward closure:

 $\forall S \subseteq T \text{ and } T \in \mathcal{I} \Rightarrow s \in \mathcal{I}$

Matroid

Matroids are set system $\mathcal{M} = (\mathcal{N}, \mathcal{I})$ where $\mathcal{I} \subseteq 2^{\mathcal{N}}$.

A set $S \in \mathcal{I}$ is said to be **independent**.

Independent sets satisfy two properties:

1. Downward closure:

 $\forall S \subseteq T \text{ and } T \in \mathcal{I} \Rightarrow s \in \mathcal{I}$

2. Exchange property:

 $\forall S, T \in \mathcal{I} \text{ and } |S| < |T| \Rightarrow \exists e \in T \setminus S \text{ such that } S + e \in \mathcal{I}$

Goal: Given and a matroid $\mathcal{M} = (\mathcal{N}, \mathcal{I})$ and a submodular f over \mathcal{N} , find:

$$S^* = rg\max_{S \subset \mathcal{I}} f(S)$$

Goal: Given and a matroid $\mathcal{M} = (\mathcal{N}, \mathcal{I})$ and a submodular f over \mathcal{N} , find:

$$S^* = rg\max_{S \subseteq \mathcal{I}} f(S)$$

APX-hard to approximate better than (1 - 1/e) so our goal is $(1 - 1/e - \varepsilon)$ -approximations.

Goal: Given and a matroid $\mathcal{M} = (\mathcal{N}, \mathcal{I})$ and a submodular f over \mathcal{N} , find:

$$S^* = rg\max_{S \subseteq \mathcal{I}} f(S)$$

APX-hard to approximate better than (1 - 1/e) so our goal is $(1 - 1/e - \varepsilon)$ -approximations.

Why study this problem?

Goal: Given and a matroid $\mathcal{M} = (\mathcal{N}, \mathcal{I})$ and a submodular f over \mathcal{N} , find:

 $S^* = rg\max_{S \subseteq \mathcal{I}} f(S)$

APX-hard to approximate better than (1 - 1/e) so our goal is $(1 - 1/e - \varepsilon)$ -approximations.

Why study this problem?

• Submodular optimization is a fundamental problem in combinatorial optimization, information retrieval, and machine learning.

Goal: Given and a matroid $\mathcal{M} = (\mathcal{N}, \mathcal{I})$ and a submodular f over \mathcal{N} , find:

 $S^* = rg\max_{S \subseteq \mathcal{I}} f(S)$

APX-hard to approximate better than (1 - 1/e) so our goal is $(1 - 1/e - \varepsilon)$ -approximations.

Why study this problem?

- Submodular optimization is a fundamental problem in combinatorial optimization, information retrieval, and machine learning.
- Many applications involve combinatorial constraints on subsets, matroids are very general ones that have been well studied.

Sometimes we assume we have an *independence oracle* that we can query with a set S to test if S is independent in M.

Sometimes we assume we have an *independence oracle* that we can query with a set S to test if S is independent in M.

In this work, we assume we instead have an explicit representation of the matroid.

Sometimes we assume we have an *independence oracle* that we can query with a set S to test if S is independent in \mathcal{M} .

In this work, we assume we instead have an **explicit representation** of the matroid.

We study the following matroids with explicit representations

1. **Graphic** - A graph G = (V, E)Application:

TSP approximations [XR15]

Sometimes we assume we have an *independence oracle* that we can query with a set S to test if S is independent in \mathcal{M} .

In this work, we assume we instead have an **explicit representation** of the matroid.

We study the following matroids with explicit representations

1. **Graphic** - A graph G = (V, E)Application:

TSP approximations [XR15]

2. **Transversal** - A bipartite graph G = ((U, V), E)Application: ad placement and matching [BIK07, BHK08] Sometimes we assume we have an *independence oracle* that we can query with a set S to test if S is independent in \mathcal{M} .

In this work, we assume we instead have an explicit representation of the matroid.

We study the following matroids with explicit representations

1. **Graphic** - A graph G = (V, E)Application:

TSP approximations [XR15]

- 2. **Transversal** A bipartite graph G = ((U, V), E)Application: ad placement and matching [BIK07, BHK08]
- 3. Laminar A tree representing the laminar family *Application:* Capacity constraints - YouTube recommendations [WRB+18]

* Assumes access to an independence oracle			
Constraint	Runtime	Paper	New
General*	$O_{\varepsilon}(nr\log^2 n)$	[Badanidiyuru–Vondrák '14]	-

* Assumes access to an independence oracle			
Constraint	Runtime	Paper	New
General*	$O_{\varepsilon}(nr\log^2 n)$	[Badanidiyuru–Vondrák '14]	-
Partition	$\widetilde{O}_{arepsilon}(n^{3/2}) \ O_{arepsilon}(n\log^2 n)$	[Buchbinder-Feldman-Schwartz'14] [Ene-Nguyen '19]	-

* Assumes access to an independence oracle			
Constraint	Runtime	Paper	New
General*	$O_{\varepsilon}(nr\log^2 n)$	[Badanidiyuru–Vondrák '14]	-
Partition	$\widetilde{O}_{arepsilon}(n^{3/2})$	[Buchbinder–Feldman–Schwartz'14]	
	$O_{\varepsilon}(n\log^2 n)$	[Ene–Nguyen '19]	-
Graphic	$O_{\varepsilon}(r\log^6 n + n\log^2 n)$	[Ene–Nguyen '19]	$O_{\varepsilon}(n\log^2 n)$

* Assumes access to an independence oracle			
Constraint	Runtime	Paper	New
General*	$O_{\varepsilon}(nr \log^2 n)$	[Badanidiyuru–Vondrák '14]	-
Partition	$\widetilde{O}_{\varepsilon}(n^{3/2})$	[Buchbinder-Feldman-Schwartz'14]	-
Graphic	$O_{\varepsilon}(r \log^6 n + n \log^2 n)$	[Ene–Nguyen 19]	$O_{\varepsilon}(n\log^2 n)$
Laminar			$O_{\varepsilon}(n\log^2 n)$

* Assumes access to an independence oracle			
Constraint	Runtime	Paper	New
General*	$O_{\varepsilon}(nr\log^2 n)$	[Badanidiyuru–Vondrák '14]	-
Partition	$\widetilde{O}_{arepsilon}(n^{3/2})$	[Buchbinder–Feldman–Schwartz'14]	
	$O_{\varepsilon}(n\log^2 n)$	[Ene–Nguyen '19]	-
Graphic	$O_{\varepsilon}(r\log^6 n + n\log^2 n)$	[Ene–Nguyen '19]	$O_{\varepsilon}(n\log^2 n)$
Laminar			$O_{\varepsilon}(n\log^2 n)$
Transvorsal			$O_{\varepsilon}(m \log n)$
Tansversal			$+n\log^2 n$)

* Assumes access to an independence oracle			
Constraint	Runtime	Paper	New
General*	$O_{\varepsilon}(nr\log^2 n)$	[Badanidiyuru–Vondrák '14]	-
Partition	$\widetilde{O}_{arepsilon}(n^{3/2})$	[Buchbinder–Feldman–Schwartz'14]	
	$O_{\varepsilon}(n\log^2 n)$	[Ene–Nguyen '19]	-
Graphic	$O_{\varepsilon}(r\log^6 n + n\log^2 n)$	[Ene–Nguyen '19]	$O_{\varepsilon}(n\log^2 n)$
Laminar			$O_{\varepsilon}(n\log^2 n)$
Transvorsal			$O_{\varepsilon}(m \log n)$
Tansversal			$+n\log^2 n$)

7

Efficient dynamic data structures

Efficient dynamic data structures

Solving optimization problems faster

1. Improved framework for fast submodular maximization with matroid constraints and a reduction to dynamic matroid independent set problems

- 1. Improved framework for fast submodular maximization with matroid constraints and a reduction to dynamic matroid independent set problems
- 2. A data structure for laminar matroids undergoing insertion and deletion updates with $O(\log n)$ update time.

- 1. Improved framework for fast submodular maximization with matroid constraints and a reduction to dynamic matroid independent set problems
- 2. A data structure for laminar matroids undergoing insertion and deletion updates with $O(\log n)$ update time.
- 3. A data structure for maintaining a (1ε) -approximate maximum weight matchings in a vertex weighted graph (transversal matroid) with weight decrement operations.

New Framework

1. Use algorithm LazySamplingGreedy to sample from maximum weight base $O_{\varepsilon}(\log n)$ times as a preconditioning step.

- 1. Use algorithm LazySamplingGreedy to sample from maximum weight base $O_{\varepsilon}(\log n)$ times as a preconditioning step.
- 2. Use algorithm ContinuousGreedy [BV14] that now runs in near-linear rounds.

- 1. Use algorithm LazySamplingGreedy to sample from maximum weight base $O_{\varepsilon}(\log n)$ times as a preconditioning step.
- 2. Use algorithm ContinuousGreedy [BV14] that now runs in near-linear rounds.

Two data structures required:

- 1. Use algorithm LazySamplingGreedy to sample from maximum weight base $O_{\varepsilon}(\log n)$ times as a preconditioning step.
- 2. Use algorithm ContinuousGreedy [BV14] that now runs in near-linear rounds.

Two data structures required:

Decremental maximum weight oracle Given weights w over elements of \mathcal{N} maintain the maximum independent set B and:

• supports decrementing the weight of elements of \mathcal{N} .

- 1. Use algorithm LazySamplingGreedy to sample from maximum weight base $O_{\varepsilon}(\log n)$ times as a preconditioning step.
- 2. Use algorithm ContinuousGreedy [BV14] that now runs in near-linear rounds.

Two data structures required:

Decremental maximum weight oracle Given weights w over elements of \mathcal{N} maintain the maximum independent set B and:

• supports decrementing the weight of elements of \mathcal{N} .

Incremental independence oracle Maintains a set B such that we can:

- test adding an element e, outputs if B + e is independent,
- inserts an element *e* into *B*.

Laminar Matroids

We can view the maximum weight independent set of a laminar matroid as follows:

We can view the maximum weight independent set of a laminar matroid as follows:

Given a tree T, capacities c_v for nodes in the tree indicating that we can take at most c_v leaves of the subtree, and weights w on the leaves of the tree.

Goal: the maximum weight set of leaves that respect the capacity constraints.

We can view the maximum weight independent set of a laminar matroid as follows:

Given a tree T, capacities c_v for nodes in the tree indicating that we can take at most c_v leaves of the subtree, and weights w on the leaves of the tree.

Goal: the maximum weight set of leaves that respect the capacity constraints.

Theorem. There exists a data structure that supports the insertion and deletion of leaves of arbitrary weight that maintains the maximum feasible set of leaves with $O(\log n)$ update time.

O(n) time per update -Not too hard

O(*n*) time per update -Not too hard

 $O(\log^2 n)$ time per update -Heavy-light decomposition

O(n) time per update -Not too hard

 $O(\log^2 n)$ time per update -Heavy-light decomposition

O(log n) time per update -Top tree framework

Graphic Matroids

Framework of Ene & Nguyen '19

New Framework

Old framework of Ene & Nguyen '19

1. Use algorithm LazySamplingGreedy to sample from maximum weight base $O_{\varepsilon}(\log n)$ times as a preconditioning step.

Old framework of Ene & Nguyen '19

1. Use algorithm LazySamplingGreedy to sample from maximum weight base $O_{\varepsilon}(\log n)$ times as a preconditioning step.

New framework

1. Use algorithm LazySamplingGreedy++ to sample from constant approximate independent set of constant size $O_{\varepsilon}(\log n)$ times as a preconditioning step.

Old framework

Decremental maximum weight oracle

Given weights w over elements of N maintain the maximum independent set B and:

• supports decrementing the weight of elements of \mathcal{N} .

Old framework

Decremental maximum weight oracle

Given weights w over elements of N maintain the maximum independent set B and:

 $\bullet\,$ supports decrementing the weight of elements of $\mathcal{N}.$

New framework

Decremental (c, d)-approximate maximum weight oracle Given weights w over elements of \mathcal{N} , constants c < 1 and d < 1, maintain an independent set B that is:

- a *c*-approximate of the maximum independent set,
- has at least *dr* elements,
- $\bullet\,$ supports decrementing the weight of elements of $\mathcal{N}.$
- supports "freezing" an element (required to be in B)

Graphic approximate maximum weight oracle

Dynamic (1/2, 1/2)-approximate maximum weight oracle

Given weights w over edges E of a graph G = (V, E) maintain a maximum spanning tree B that is:

- a (1/2)-approximate of the maximum spanning tree,
- has at least |V|/2 edges,
- supports decrementing weight of an edge.
- supports contracting an edge

Graphic approximate maximum weight oracle

Dynamic (1/2, 1/2)-approximate maximum weight oracle

Given weights w over edges E of a graph G = (V, E) maintain a maximum spanning tree B that is:

- a (1/2)-approximate of the maximum spanning tree,
- has at least |V|/2 edges,
- supports decrementing weight of an edge.
- supports contracting an edge

Simple data structure with $O(\log n)$ update time

- Maintain for every vertex a sorted list of incident edges,
- B = union of maximum weight incident edge to each vertex
- On decrement, fix sorted list at endpoints (heap).
- On contract, merge lists (heaps)

Graphic matroid example

Graphic matroid example

Graphic matroid example

Transversal matroids = Matchable U of a bipartite graph $G = (U \cup V, E)$ Let m = |E|.

Transversal matroids = Matchable U of a bipartite graph $G = (U \cup V, E)$ Let m = |E|.

Dynamic maximum weight oracle: Maintain maximum vertex weight matching with changing vertex weights.

Transversal matroids = Matchable U of a bipartite graph $G = (U \cup V, E)$ Let m = |E|.

Dynamic maximum weight oracle: Maintain maximum vertex weight matching with changing vertex weights.

Incremental independence oracle:

Vertex incremental matching.

Transversal matroids = Matchable U of a bipartite graph $G = (U \cup V, E)$ Let m = |E|.

Dynamic maximum weight oracle: Maintain maximum vertex weight matching with changing vertex weights.

Incremental independence oracle: Vertex incremental matching.

Fast algorithm would imply fast matching. Both problems have *conditional lower bounds* of $\Omega(m^{3/2-\varepsilon})$ update time.

Old framework of Ene & Nguyen '19

Incremental independence oracle

Maintains a set B such that we can:

- test adding an element e, outputs if B + e is independent,
- inserts an element *e* into *B*.

Old framework of Ene & Nguyen '19

Incremental independence oracle

Maintains a set B such that we can:

- test adding an element e, outputs if B + e is independent,
- inserts an element *e* into *B*.

New framework

 $(1 - \varepsilon)$ -approximate decremental independent set data structure Maintains a set *B* of size $(1 - \varepsilon)r$ such that we can:

• delete one element from \mathcal{N} .

Dynamic $(1 - \varepsilon, 1/2)$ -approximate maximum weight oracle

Dynamic $(1 - \varepsilon, 1/2)$ -approximate maximum weight oracle High level idea:

Dynamic (1 – ε , 1/2)-approximate maximum weight oracle

High level idea:

Use variation of multiplicative auction algorithm of Z. and Henzinger (2023) to support vertex weight decrements with $O(\log n)$ update time, and ensure maximality.

Dynamic $(1-\varepsilon,1/2)$ -approximate maximum weight oracle

High level idea:

Use variation of multiplicative auction algorithm of Z. and Henzinger (2023) to support vertex weight decrements with $O(\log n)$ update time, and ensure maximality.

(1-arepsilon)-approximate decremental independent set data structure

Dynamic (1 – ε , 1/2)-approximate maximum weight oracle

High level idea:

Use variation of multiplicative auction algorithm of Z. and Henzinger (2023) to support vertex weight decrements with $O(\log n)$ update time, and ensure maximality. $(1 - \varepsilon)$ -approximate decremental independent set data structure

High level idea:

Use vertex decremental algorithm of Bosek, Leniowski, Sankowski, and Zych (2014)

- 1. Improved framework for fast submodular maximization with matroid constraints and a reduction to dynamic matroid independent set problems
- 2. A data structure for laminar matroids undergoing insertion and deletion updates with $O(\log n)$ update time.
- 3. A data structure for maintaining a (1ε) -approximate maximum weight matchings in a vertex weighted graph (transversal matroid) with weight decrement operations.

New Framework

