
Faster submodular optimization for several matroids

Using dynamic data structures to speed up optimization problems

Monika Henzinger (ISTA) Paul Liu (Stanford) Jan Vondrák (Stanford) Da Wei Zheng (UIUC)

July 14, 2023

ICALP 2023, Paderborn, Germany

1

Submodular functions

For a set N , a set function f : 2N is submodular if for any sets S and T :

f (S) + f (T) ≥ f (S + T) + f (S − T)

We only consider monotone submodular functions.

f (S) ≤ f (T) for any sets S ⊆ T

We assume we have an oracle that computes f .

2

Matroid

Matroids are set system M = (N , I) where I ⊆ 2N .

A set S ∈ I is said to be independent.

Independent sets satisfy two properties:

1. Downward closure:

∀S ⊆ T and T ∈ I ⇒ s ∈ I

2. Exchange property:

∀S ,T ∈ I and |S | < |T | ⇒ ∃e ∈ T \ S such that S + e ∈ I

3

Matroid

Matroids are set system M = (N , I) where I ⊆ 2N .

A set S ∈ I is said to be independent.

Independent sets satisfy two properties:

1. Downward closure:

∀S ⊆ T and T ∈ I ⇒ s ∈ I

2. Exchange property:

∀S ,T ∈ I and |S | < |T | ⇒ ∃e ∈ T \ S such that S + e ∈ I

3

Matroid

Matroids are set system M = (N , I) where I ⊆ 2N .

A set S ∈ I is said to be independent.

Independent sets satisfy two properties:

1. Downward closure:

∀S ⊆ T and T ∈ I ⇒ s ∈ I

2. Exchange property:

∀S ,T ∈ I and |S | < |T | ⇒ ∃e ∈ T \ S such that S + e ∈ I

3

Submodular maximization with matroid constraints

Goal: Given and a matroid M = (N , I) and a submodular f over N , find:

S∗ = argmax
S⊆I

f (S)

APX-hard to approximate better than (1− 1/e) so our goal is

(1− 1/e − ε)-approximations.

Why study this problem?

• Submodular optimization is a fundamental problem in combinatorial optimization,

information retrieval, and machine learning.

• Many applications involve combinatorial constraints on subsets, matroids are very

general ones that have been well studied.

4

Submodular maximization with matroid constraints

Goal: Given and a matroid M = (N , I) and a submodular f over N , find:

S∗ = argmax
S⊆I

f (S)

APX-hard to approximate better than (1− 1/e) so our goal is

(1− 1/e − ε)-approximations.

Why study this problem?

• Submodular optimization is a fundamental problem in combinatorial optimization,

information retrieval, and machine learning.

• Many applications involve combinatorial constraints on subsets, matroids are very

general ones that have been well studied.

4

Submodular maximization with matroid constraints

Goal: Given and a matroid M = (N , I) and a submodular f over N , find:

S∗ = argmax
S⊆I

f (S)

APX-hard to approximate better than (1− 1/e) so our goal is

(1− 1/e − ε)-approximations.

Why study this problem?

• Submodular optimization is a fundamental problem in combinatorial optimization,

information retrieval, and machine learning.

• Many applications involve combinatorial constraints on subsets, matroids are very

general ones that have been well studied.

4

Submodular maximization with matroid constraints

Goal: Given and a matroid M = (N , I) and a submodular f over N , find:

S∗ = argmax
S⊆I

f (S)

APX-hard to approximate better than (1− 1/e) so our goal is

(1− 1/e − ε)-approximations.

Why study this problem?

• Submodular optimization is a fundamental problem in combinatorial optimization,

information retrieval, and machine learning.

• Many applications involve combinatorial constraints on subsets, matroids are very

general ones that have been well studied.

4

Submodular maximization with matroid constraints

Goal: Given and a matroid M = (N , I) and a submodular f over N , find:

S∗ = argmax
S⊆I

f (S)

APX-hard to approximate better than (1− 1/e) so our goal is

(1− 1/e − ε)-approximations.

Why study this problem?

• Submodular optimization is a fundamental problem in combinatorial optimization,

information retrieval, and machine learning.

• Many applications involve combinatorial constraints on subsets, matroids are very

general ones that have been well studied.

4

... over specific matroids

Sometimes we assume we have an independence oracle that we can query with a set S

to test if S is independent in M.

In this work, we assume we instead have an explicit representation of the matroid.

We study the following matroids with explicit representations

1. Graphic - A graph G = (V ,E)

Application: TSP approximations [XR15]

2. Transversal - A bipartite graph G = ((U,V),E)

Application: ad placement and matching [BIK07, BHK08]

3. Laminar - A tree representing the laminar family

Application: Capacity constraints - YouTube recommendations [WRB+18]

5

... over specific matroids

Sometimes we assume we have an independence oracle that we can query with a set S

to test if S is independent in M.

In this work, we assume we instead have an explicit representation of the matroid.

We study the following matroids with explicit representations

1. Graphic - A graph G = (V ,E)

Application: TSP approximations [XR15]

2. Transversal - A bipartite graph G = ((U,V),E)

Application: ad placement and matching [BIK07, BHK08]

3. Laminar - A tree representing the laminar family

Application: Capacity constraints - YouTube recommendations [WRB+18]

5

... over specific matroids

Sometimes we assume we have an independence oracle that we can query with a set S

to test if S is independent in M.

In this work, we assume we instead have an explicit representation of the matroid.

We study the following matroids with explicit representations

1. Graphic - A graph G = (V ,E)

Application: TSP approximations [XR15]

2. Transversal - A bipartite graph G = ((U,V),E)

Application: ad placement and matching [BIK07, BHK08]

3. Laminar - A tree representing the laminar family

Application: Capacity constraints - YouTube recommendations [WRB+18]

5

... over specific matroids

Sometimes we assume we have an independence oracle that we can query with a set S

to test if S is independent in M.

In this work, we assume we instead have an explicit representation of the matroid.

We study the following matroids with explicit representations

1. Graphic - A graph G = (V ,E)

Application: TSP approximations [XR15]

2. Transversal - A bipartite graph G = ((U,V),E)

Application: ad placement and matching [BIK07, BHK08]

3. Laminar - A tree representing the laminar family

Application: Capacity constraints - YouTube recommendations [WRB+18]

5

... over specific matroids

Sometimes we assume we have an independence oracle that we can query with a set S

to test if S is independent in M.

In this work, we assume we instead have an explicit representation of the matroid.

We study the following matroids with explicit representations

1. Graphic - A graph G = (V ,E)

Application: TSP approximations [XR15]

2. Transversal - A bipartite graph G = ((U,V),E)

Application: ad placement and matching [BIK07, BHK08]

3. Laminar - A tree representing the laminar family

Application: Capacity constraints - YouTube recommendations [WRB+18]

5

Prior Results and New Results

n is the size of the ground set, m is the size of the matroid representation,

r is the rank of the matroid.

* Assumes access to an independence oracle

Constraint Runtime Paper New

General* Oε(nr log
2 n) [Badanidiyuru–Vondrák ’14] -

Partition
Õε(n

3/2) [Buchbinder–Feldman–Schwartz’14]

-
Oε(n log

2 n) [Ene–Nguyen ’19]

Graphic Oε(r log
6 n + n log2 n) [Ene–Nguyen ’19] Oε(n log

2 n)

Laminar Oε(n log
2 n)

Transversal
Oε(m log n

+n log2 n)

6

Prior Results and New Results

n is the size of the ground set, m is the size of the matroid representation,

r is the rank of the matroid.

* Assumes access to an independence oracle

Constraint Runtime Paper New

General* Oε(nr log
2 n) [Badanidiyuru–Vondrák ’14] -

Partition
Õε(n

3/2) [Buchbinder–Feldman–Schwartz’14]

-
Oε(n log

2 n) [Ene–Nguyen ’19]

Graphic Oε(r log
6 n + n log2 n) [Ene–Nguyen ’19] Oε(n log

2 n)

Laminar Oε(n log
2 n)

Transversal
Oε(m log n

+n log2 n)

6

Prior Results and New Results

n is the size of the ground set, m is the size of the matroid representation,

r is the rank of the matroid.

* Assumes access to an independence oracle

Constraint Runtime Paper New

General* Oε(nr log
2 n) [Badanidiyuru–Vondrák ’14] -

Partition
Õε(n

3/2) [Buchbinder–Feldman–Schwartz’14]

-
Oε(n log

2 n) [Ene–Nguyen ’19]

Graphic Oε(r log
6 n + n log2 n) [Ene–Nguyen ’19] Oε(n log

2 n)

Laminar Oε(n log
2 n)

Transversal
Oε(m log n

+n log2 n)

6

Prior Results and New Results

n is the size of the ground set, m is the size of the matroid representation,

r is the rank of the matroid.

* Assumes access to an independence oracle

Constraint Runtime Paper New

General* Oε(nr log
2 n) [Badanidiyuru–Vondrák ’14] -

Partition
Õε(n

3/2) [Buchbinder–Feldman–Schwartz’14]

-
Oε(n log

2 n) [Ene–Nguyen ’19]

Graphic Oε(r log
6 n + n log2 n) [Ene–Nguyen ’19] Oε(n log

2 n)

Laminar Oε(n log
2 n)

Transversal
Oε(m log n

+n log2 n)

6

Prior Results and New Results

n is the size of the ground set, m is the size of the matroid representation,

r is the rank of the matroid.

* Assumes access to an independence oracle

Constraint Runtime Paper New

General* Oε(nr log
2 n) [Badanidiyuru–Vondrák ’14] -

Partition
Õε(n

3/2) [Buchbinder–Feldman–Schwartz’14]

-
Oε(n log

2 n) [Ene–Nguyen ’19]

Graphic Oε(r log
6 n + n log2 n) [Ene–Nguyen ’19] Oε(n log

2 n)

Laminar Oε(n log
2 n)

Transversal
Oε(m log n

+n log2 n)

6

Prior Results and New Results

n is the size of the ground set, m is the size of the matroid representation,

r is the rank of the matroid.

* Assumes access to an independence oracle

Constraint Runtime Paper New

General* Oε(nr log
2 n) [Badanidiyuru–Vondrák ’14] -

Partition
Õε(n

3/2) [Buchbinder–Feldman–Schwartz’14]

-
Oε(n log

2 n) [Ene–Nguyen ’19]

Graphic Oε(r log
6 n + n log2 n) [Ene–Nguyen ’19] Oε(n log

2 n)

Laminar Oε(n log
2 n)

Transversal
Oε(m log n

+n log2 n)

6

Takeaway message

Efficient dynamic data structures

↓↓↓ ↑↑↑

Solving optimization problems faster

7

Takeaway message

Efficient dynamic data structures

↓↓↓ ↑↑↑

Solving optimization problems faster

7

Takeaway message

Efficient dynamic data structures

↓↓↓ ↑↑↑

Solving optimization problems faster

7

Our results

1. Improved framework for fast submodular maximization with matroid constraints

and a reduction to dynamic matroid independent set problems

2. A data structure for laminar matroids undergoing insertion and deletion updates

with O(log n) update time.

3. A data structure for maintaining a (1− ε)–approximate maximum weight

matchings in a vertex weighted graph (transversal matroid) with weight

decrement operations.

8

Our results

1. Improved framework for fast submodular maximization with matroid constraints

and a reduction to dynamic matroid independent set problems

2. A data structure for laminar matroids undergoing insertion and deletion updates

with O(log n) update time.

3. A data structure for maintaining a (1− ε)–approximate maximum weight

matchings in a vertex weighted graph (transversal matroid) with weight

decrement operations.

8

Our results

1. Improved framework for fast submodular maximization with matroid constraints

and a reduction to dynamic matroid independent set problems

2. A data structure for laminar matroids undergoing insertion and deletion updates

with O(log n) update time.

3. A data structure for maintaining a (1− ε)–approximate maximum weight

matchings in a vertex weighted graph (transversal matroid) with weight

decrement operations.

8

Framework of Ene & Nguyen ’19

Explicit matroid

representation

LazySamplingGreedy ContinuousGreedy

Decremental
maximum weight

oracle

Incremental
independence

oracle

Submodular function

oracle

≥ (1− e− ε)OPT

SOL

9

New Framework

Explicit matroid

representation

ContinuousGreedy

Submodular function

oracle

≥ (1− e− ε)OPT

SOL

Decremental (c, d)
approx maximum
weight oracle

(1− ε)-approx
decremental

independence oracle

LazySamplingGreedy++

10

Framework of Ene & Nguyen ’19

1. Use algorithm LazySamplingGreedy to sample from maximum weight base

Oε(log n) times as a preconditioning step.

2. Use algorithm ContinuousGreedy [BV14] that now runs in near-linear rounds.

Two data structures required:

Decremental maximum weight oracle Given weights w over elements of N
maintain the maximum independent set B and:

• supports decrementing the weight of elements of N .

Incremental independence oracle Maintains a set B such that we can:

• test adding an element e, outputs if B + e is independent,

• inserts an element e into B.

11

Framework of Ene & Nguyen ’19

1. Use algorithm LazySamplingGreedy to sample from maximum weight base

Oε(log n) times as a preconditioning step.

2. Use algorithm ContinuousGreedy [BV14] that now runs in near-linear rounds.

Two data structures required:

Decremental maximum weight oracle Given weights w over elements of N
maintain the maximum independent set B and:

• supports decrementing the weight of elements of N .

Incremental independence oracle Maintains a set B such that we can:

• test adding an element e, outputs if B + e is independent,

• inserts an element e into B.

11

Framework of Ene & Nguyen ’19

1. Use algorithm LazySamplingGreedy to sample from maximum weight base

Oε(log n) times as a preconditioning step.

2. Use algorithm ContinuousGreedy [BV14] that now runs in near-linear rounds.

Two data structures required:

Decremental maximum weight oracle Given weights w over elements of N
maintain the maximum independent set B and:

• supports decrementing the weight of elements of N .

Incremental independence oracle Maintains a set B such that we can:

• test adding an element e, outputs if B + e is independent,

• inserts an element e into B.

11

Framework of Ene & Nguyen ’19

1. Use algorithm LazySamplingGreedy to sample from maximum weight base

Oε(log n) times as a preconditioning step.

2. Use algorithm ContinuousGreedy [BV14] that now runs in near-linear rounds.

Two data structures required:

Decremental maximum weight oracle Given weights w over elements of N
maintain the maximum independent set B and:

• supports decrementing the weight of elements of N .

Incremental independence oracle Maintains a set B such that we can:

• test adding an element e, outputs if B + e is independent,

• inserts an element e into B.

11

Framework of Ene & Nguyen ’19

1. Use algorithm LazySamplingGreedy to sample from maximum weight base

Oε(log n) times as a preconditioning step.

2. Use algorithm ContinuousGreedy [BV14] that now runs in near-linear rounds.

Two data structures required:

Decremental maximum weight oracle Given weights w over elements of N
maintain the maximum independent set B and:

• supports decrementing the weight of elements of N .

Incremental independence oracle Maintains a set B such that we can:

• test adding an element e, outputs if B + e is independent,

• inserts an element e into B.

11

Laminar Matroids

12

Framework of Ene & Nguyen ’19

Explicit matroid

representation

LazySamplingGreedy ContinuousGreedy

Decremental
maximum weight

oracle

Incremental
independence

oracle

Submodular function

oracle

≥ (1− e− ε)OPT

SOL

13

Laminar

We can view the maximum weight independent set of a laminar matroid as follows:

Given a tree T , capacities cv for nodes in the tree indicating that we can take at most

cv leaves of the subtree, and weights w on the leaves of the tree.

Goal: the maximum weight set of leaves that respect the capacity constraints.

Theorem. There exists a data structure that supports the insertion and deletion of leaves

of arbitrary weight that maintains the maximum feasible set of leaves with O(log n)

update time.

14

Laminar

We can view the maximum weight independent set of a laminar matroid as follows:

Given a tree T , capacities cv for nodes in the tree indicating that we can take at most

cv leaves of the subtree, and weights w on the leaves of the tree.

Goal: the maximum weight set of leaves that respect the capacity constraints.

Theorem. There exists a data structure that supports the insertion and deletion of leaves

of arbitrary weight that maintains the maximum feasible set of leaves with O(log n)

update time.

14

Laminar

We can view the maximum weight independent set of a laminar matroid as follows:

Given a tree T , capacities cv for nodes in the tree indicating that we can take at most

cv leaves of the subtree, and weights w on the leaves of the tree.

Goal: the maximum weight set of leaves that respect the capacity constraints.

Theorem. There exists a data structure that supports the insertion and deletion of leaves

of arbitrary weight that maintains the maximum feasible set of leaves with O(log n)

update time.

14

Laminar example

1 2

1

3 5 7 98 2 6

O(n) time per update -

Not too hard

O(log2 n) time per update -

Heavy-light decomposition

O(log n) time per update -

Top tree framework

15

Laminar example

3 5 7 98 2 6

0 0

0

O(n) time per update -

Not too hard

O(log2 n) time per update -

Heavy-light decomposition

O(log n) time per update -

Top tree framework

15

Laminar example

0 0

0

3 5 7 94 2 6

O(n) time per update -

Not too hard

O(log2 n) time per update -

Heavy-light decomposition

O(log n) time per update -

Top tree framework

15

Laminar example

3 5 7 94 2 6

0 1

0

O(n) time per update -

Not too hard

O(log2 n) time per update -

Heavy-light decomposition

O(log n) time per update -

Top tree framework

15

Laminar example

0 0

0

3 5 7 94 2 6

O(n) time per update -

Not too hard

O(log2 n) time per update -

Heavy-light decomposition

O(log n) time per update -

Top tree framework

15

Laminar example

0 0

0

3 5 7 94 2 6

O(n) time per update -

Not too hard

O(log2 n) time per update -

Heavy-light decomposition

O(log n) time per update -

Top tree framework

15

Laminar example

0 0

0

3 5 7 94 2 6

O(n) time per update -

Not too hard

O(log2 n) time per update -

Heavy-light decomposition

O(log n) time per update -

Top tree framework

15

Laminar example

0 0

0

3 5 7 94 2 6

O(n) time per update -

Not too hard

O(log2 n) time per update -

Heavy-light decomposition

O(log n) time per update -

Top tree framework

15

Graphic Matroids

16

Framework of Ene & Nguyen ’19

Explicit matroid

representation

LazySamplingGreedy ContinuousGreedy

Decremental
maximum weight

oracle

Incremental
independence

oracle

Submodular function

oracle

≥ (1− e− ε)OPT

SOL

17

New Framework

Explicit matroid

representation

ContinuousGreedy

Incremental
independence

oracle

Submodular function

oracle

≥ (1− e− ε)OPT

SOL

Decremental (c, d)
approx maximum
weight oracle

LazySamplingGreedy++

18

Improved Framework

Old framework of Ene & Nguyen ’19

1. Use algorithm LazySamplingGreedy to sample from maximum weight base

Oε(log n) times as a preconditioning step.

New framework

1. Use algorithm LazySamplingGreedy++ to sample from constant approximate

independent set of constant size Oε(log n) times as a preconditioning step.

19

Improved Framework

Old framework of Ene & Nguyen ’19

1. Use algorithm LazySamplingGreedy to sample from maximum weight base

Oε(log n) times as a preconditioning step.

New framework

1. Use algorithm LazySamplingGreedy++ to sample from constant approximate

independent set of constant size Oε(log n) times as a preconditioning step.

19

Data structure differences

Old framework

Decremental maximum weight oracle
Given weights w over elements of N maintain the maximum independent set B and:

• supports decrementing the weight of elements of N .

New framework

Decremental (c , d)-approximate maximum weight oracle
Given weights w over elements of N , constants c < 1 and d < 1, maintain an

independent set B that is:

• a c-approximate of the maximum independent set,

• has at least dr elements,

• supports decrementing the weight of elements of N .

• supports ”freezing” an element (required to be in B)

20

Data structure differences

Old framework

Decremental maximum weight oracle
Given weights w over elements of N maintain the maximum independent set B and:

• supports decrementing the weight of elements of N .

New framework

Decremental (c , d)-approximate maximum weight oracle
Given weights w over elements of N , constants c < 1 and d < 1, maintain an

independent set B that is:

• a c-approximate of the maximum independent set,

• has at least dr elements,

• supports decrementing the weight of elements of N .

• supports ”freezing” an element (required to be in B)
20

Graphic approximate maximum weight oracle

Dynamic (1/2, 1/2)-approximate maximum weight oracle

Given weights w over edges E of a graph G = (V ,E) maintain a maximum spanning

tree B that is:

• a (1/2)-approximate of the maximum spanning tree,

• has at least |V |/2 edges,

• supports decrementing weight of an edge.

• supports contracting an edge

Simple data structure with O(log n) update time

• Maintain for every vertex a sorted list of incident edges,

• B = union of maximum weight incident edge to each vertex

• On decrement, fix sorted list at endpoints (heap).

• On contract, merge lists (heaps)

21

Graphic approximate maximum weight oracle

Dynamic (1/2, 1/2)-approximate maximum weight oracle

Given weights w over edges E of a graph G = (V ,E) maintain a maximum spanning

tree B that is:

• a (1/2)-approximate of the maximum spanning tree,

• has at least |V |/2 edges,

• supports decrementing weight of an edge.

• supports contracting an edge

Simple data structure with O(log n) update time

• Maintain for every vertex a sorted list of incident edges,

• B = union of maximum weight incident edge to each vertex

• On decrement, fix sorted list at endpoints (heap).

• On contract, merge lists (heaps) 21

Graphic matroid example

7
3

10 2
1

4

5

8

6

9

13
12

14

11

22

Graphic matroid example

7
3

10 2
1

4

5

8

6

11

9

13
12

14

22

Graphic matroid example

7
3

10 2
1

4

5

8

6

9

13
12

14

5

22

Transversal matroids

Transversal matroids = Matchable U of a

bipartite graph G = (U ∪ V ,E)

Let m = |E |.

Dynamic maximum weight oracle:

Maintain maximum vertex weight matching

with changing vertex weights.

Incremental independence oracle:

Vertex incremental matching.

Fast algorithm would imply fast matching.

Both problems have conditional lower

bounds of Ω(m3/2−ε) update time.

5

8

9

3

23

Transversal matroids

Transversal matroids = Matchable U of a

bipartite graph G = (U ∪ V ,E)

Let m = |E |.
Dynamic maximum weight oracle:

Maintain maximum vertex weight matching

with changing vertex weights.

Incremental independence oracle:

Vertex incremental matching.

Fast algorithm would imply fast matching.

Both problems have conditional lower

bounds of Ω(m3/2−ε) update time.

5

8

9

3

23

Transversal matroids

Transversal matroids = Matchable U of a

bipartite graph G = (U ∪ V ,E)

Let m = |E |.
Dynamic maximum weight oracle:

Maintain maximum vertex weight matching

with changing vertex weights.

Incremental independence oracle:

Vertex incremental matching.

Fast algorithm would imply fast matching.

Both problems have conditional lower

bounds of Ω(m3/2−ε) update time.

5

8

9

3

23

Transversal matroids

Transversal matroids = Matchable U of a

bipartite graph G = (U ∪ V ,E)

Let m = |E |.
Dynamic maximum weight oracle:

Maintain maximum vertex weight matching

with changing vertex weights.

Incremental independence oracle:

Vertex incremental matching.

Fast algorithm would imply fast matching.

Both problems have conditional lower

bounds of Ω(m3/2−ε) update time.

5

8

9

3

23

Comparison of Framework

Old framework of Ene & Nguyen ’19

Incremental independence oracle

Maintains a set B such that we can:

• test adding an element e, outputs if B + e is independent,

• inserts an element e into B.

New framework

(1− ε)-approximate decremental independent set data structure

Maintains a set B of size (1− ε)r such that we can:

• delete one element from N .

24

Comparison of Framework

Old framework of Ene & Nguyen ’19

Incremental independence oracle

Maintains a set B such that we can:

• test adding an element e, outputs if B + e is independent,

• inserts an element e into B.

New framework

(1− ε)-approximate decremental independent set data structure

Maintains a set B of size (1− ε)r such that we can:

• delete one element from N .

24

Transversal dynamic approximate maximum weight oracle

Dynamic (1− ε, 1/2)-approximate maximum weight oracle

High level idea:

Use variation of multiplicative auction algorithm of Z. and Henzinger (2023) to

support vertex weight decrements with O(log n) update time, and ensure maximality.

(1− ε)-approximate decremental independent set data structure

High level idea:

Use vertex decremental algorithm of Bosek, Leniowski, Sankowski, and Zych (2014)

25

Transversal dynamic approximate maximum weight oracle

Dynamic (1− ε, 1/2)-approximate maximum weight oracle

High level idea:

Use variation of multiplicative auction algorithm of Z. and Henzinger (2023) to

support vertex weight decrements with O(log n) update time, and ensure maximality.

(1− ε)-approximate decremental independent set data structure

High level idea:

Use vertex decremental algorithm of Bosek, Leniowski, Sankowski, and Zych (2014)

25

Transversal dynamic approximate maximum weight oracle

Dynamic (1− ε, 1/2)-approximate maximum weight oracle

High level idea:

Use variation of multiplicative auction algorithm of Z. and Henzinger (2023) to

support vertex weight decrements with O(log n) update time, and ensure maximality.

(1− ε)-approximate decremental independent set data structure

High level idea:

Use vertex decremental algorithm of Bosek, Leniowski, Sankowski, and Zych (2014)

25

Transversal dynamic approximate maximum weight oracle

Dynamic (1− ε, 1/2)-approximate maximum weight oracle

High level idea:

Use variation of multiplicative auction algorithm of Z. and Henzinger (2023) to

support vertex weight decrements with O(log n) update time, and ensure maximality.

(1− ε)-approximate decremental independent set data structure

High level idea:

Use vertex decremental algorithm of Bosek, Leniowski, Sankowski, and Zych (2014)

25

Transversal dynamic approximate maximum weight oracle

Dynamic (1− ε, 1/2)-approximate maximum weight oracle

High level idea:

Use variation of multiplicative auction algorithm of Z. and Henzinger (2023) to

support vertex weight decrements with O(log n) update time, and ensure maximality.

(1− ε)-approximate decremental independent set data structure

High level idea:

Use vertex decremental algorithm of Bosek, Leniowski, Sankowski, and Zych (2014)

25

Summary

1. Improved framework for fast submodular maximization with matroid constraints

and a reduction to dynamic matroid independent set problems

2. A data structure for laminar matroids undergoing insertion and deletion updates

with O(log n) update time.

3. A data structure for maintaining a (1− ε)–approximate maximum weight

matchings in a vertex weighted graph (transversal matroid) with weight

decrement operations.

26

New Framework

Explicit matroid

representation

ContinuousGreedy

Submodular function

oracle

≥ (1− e− ε)OPT

SOL

Decremental (c, d)
approx maximum
weight oracle

(1− ε)-approx
decremental

independence oracle

LazySamplingGreedy++

27

	Introduction

