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Submodular functions

For a set N , a set function f : 2N is submodular if for any sets S and T :

f (S) + f (T ) ≥ f (S + T ) + f (S − T )

We only consider monotone submodular functions.

f (S) ≤ f (T ) for any sets S ⊆ T

We assume we have an oracle that computes f .
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Matroid

Matroids are set system M = (N , I) where I ⊆ 2N .

A set S ∈ I is said to be independent.

Independent sets satisfy two properties:

1. Downward closure:

∀S ⊆ T and T ∈ I ⇒ s ∈ I

2. Exchange property:

∀S ,T ∈ I and |S | < |T | ⇒ ∃e ∈ T \ S such that S + e ∈ I
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Submodular maximization with matroid constraints

Goal: Given and a matroid M = (N , I) and a submodular f over N , find:

S∗ = argmax
S⊆I

f (S)

APX-hard to approximate better than (1− 1/e) so our goal is

(1− 1/e − ε)-approximations.

Why study this problem?

• Submodular optimization is a fundamental problem in combinatorial optimization,

information retrieval, and machine learning.

• Many applications involve combinatorial constraints on subsets, matroids are very

general ones that have been well studied.
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... over specific matroids

Sometimes we assume we have an independence oracle that we can query with a set S

to test if S is independent in M.

In this work, we assume we instead have an explicit representation of the matroid.

We study the following matroids with explicit representations

1. Graphic - A graph G = (V ,E )

Application: TSP approximations [XR15]

2. Transversal - A bipartite graph G = ((U,V ),E )

Application: ad placement and matching [BIK07, BHK08]

3. Laminar - A tree representing the laminar family

Application: Capacity constraints - YouTube recommendations [WRB+18]
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Prior Results and New Results

n is the size of the ground set, m is the size of the matroid representation,

r is the rank of the matroid.

* Assumes access to an independence oracle

Constraint Runtime Paper New

General* Oε(nr log
2 n) [Badanidiyuru–Vondrák ’14] -

Partition
Õε(n

3/2) [Buchbinder–Feldman–Schwartz’14]

-
Oε(n log

2 n) [Ene–Nguyen ’19]

Graphic Oε(r log
6 n + n log2 n) [Ene–Nguyen ’19] Oε(n log

2 n)

Laminar Oε(n log
2 n)

Transversal
Oε(m log n

+n log2 n)
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Õε(n

3/2) [Buchbinder–Feldman–Schwartz’14]

-
Oε(n log

2 n) [Ene–Nguyen ’19]

Graphic Oε(r log
6 n + n log2 n) [Ene–Nguyen ’19] Oε(n log

2 n)

Laminar Oε(n log
2 n)

Transversal
Oε(m log n

+n log2 n)

6



Prior Results and New Results

n is the size of the ground set, m is the size of the matroid representation,

r is the rank of the matroid.

* Assumes access to an independence oracle

Constraint Runtime Paper New

General* Oε(nr log
2 n) [Badanidiyuru–Vondrák ’14] -

Partition
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Takeaway message

Efficient dynamic data structures

↓↓↓ ↑↑↑

Solving optimization problems faster
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Our results

1. Improved framework for fast submodular maximization with matroid constraints

and a reduction to dynamic matroid independent set problems

2. A data structure for laminar matroids undergoing insertion and deletion updates

with O(log n) update time.

3. A data structure for maintaining a (1− ε)–approximate maximum weight

matchings in a vertex weighted graph (transversal matroid) with weight

decrement operations.
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Framework of Ene & Nguyen ’19

Explicit matroid

representation

LazySamplingGreedy ContinuousGreedy

Decremental
maximum weight

oracle

Incremental
independence

oracle

Submodular function

oracle

≥ (1− e− ε)OPT

SOL
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New Framework

Explicit matroid

representation

ContinuousGreedy

Submodular function

oracle

≥ (1− e− ε)OPT

SOL

Decremental (c, d)
approx maximum
weight oracle

(1− ε)-approx
decremental

independence oracle

LazySamplingGreedy++
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Framework of Ene & Nguyen ’19

1. Use algorithm LazySamplingGreedy to sample from maximum weight base

Oε(log n) times as a preconditioning step.

2. Use algorithm ContinuousGreedy [BV14] that now runs in near-linear rounds.

Two data structures required:

Decremental maximum weight oracle Given weights w over elements of N
maintain the maximum independent set B and:

• supports decrementing the weight of elements of N .

Incremental independence oracle Maintains a set B such that we can:

• test adding an element e, outputs if B + e is independent,

• inserts an element e into B.
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Laminar Matroids
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Laminar

We can view the maximum weight independent set of a laminar matroid as follows:

Given a tree T , capacities cv for nodes in the tree indicating that we can take at most

cv leaves of the subtree, and weights w on the leaves of the tree.

Goal: the maximum weight set of leaves that respect the capacity constraints.

Theorem. There exists a data structure that supports the insertion and deletion of leaves

of arbitrary weight that maintains the maximum feasible set of leaves with O(log n)

update time.
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Laminar example

1 2

1

3 5 7 98 2 6

O(n) time per update -

Not too hard

O(log2 n) time per update -

Heavy-light decomposition

O(log n) time per update -

Top tree framework
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Graphic Matroids
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Improved Framework

Old framework of Ene & Nguyen ’19

1. Use algorithm LazySamplingGreedy to sample from maximum weight base

Oε(log n) times as a preconditioning step.

New framework

1. Use algorithm LazySamplingGreedy++ to sample from constant approximate

independent set of constant size Oε(log n) times as a preconditioning step.
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Data structure differences

Old framework

Decremental maximum weight oracle
Given weights w over elements of N maintain the maximum independent set B and:

• supports decrementing the weight of elements of N .

New framework

Decremental (c , d)-approximate maximum weight oracle
Given weights w over elements of N , constants c < 1 and d < 1, maintain an

independent set B that is:

• a c-approximate of the maximum independent set,

• has at least dr elements,

• supports decrementing the weight of elements of N .

• supports ”freezing” an element (required to be in B)
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Graphic approximate maximum weight oracle

Dynamic (1/2, 1/2)-approximate maximum weight oracle

Given weights w over edges E of a graph G = (V ,E ) maintain a maximum spanning

tree B that is:

• a (1/2)-approximate of the maximum spanning tree,

• has at least |V |/2 edges,

• supports decrementing weight of an edge.

• supports contracting an edge

Simple data structure with O(log n) update time

• Maintain for every vertex a sorted list of incident edges,

• B = union of maximum weight incident edge to each vertex

• On decrement, fix sorted list at endpoints (heap).

• On contract, merge lists (heaps)

21
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Graphic matroid example
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Transversal matroids

Transversal matroids = Matchable U of a

bipartite graph G = (U ∪ V ,E )

Let m = |E |.

Dynamic maximum weight oracle:

Maintain maximum vertex weight matching

with changing vertex weights.

Incremental independence oracle:

Vertex incremental matching.

Fast algorithm would imply fast matching.

Both problems have conditional lower

bounds of Ω(m3/2−ε) update time.
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Comparison of Framework

Old framework of Ene & Nguyen ’19

Incremental independence oracle

Maintains a set B such that we can:

• test adding an element e, outputs if B + e is independent,

• inserts an element e into B.

New framework

(1− ε)-approximate decremental independent set data structure

Maintains a set B of size (1− ε)r such that we can:

• delete one element from N .

24
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Transversal dynamic approximate maximum weight oracle

Dynamic (1− ε, 1/2)-approximate maximum weight oracle

High level idea:

Use variation of multiplicative auction algorithm of Z. and Henzinger (2023) to

support vertex weight decrements with O(log n) update time, and ensure maximality.

(1− ε)-approximate decremental independent set data structure

High level idea:

Use vertex decremental algorithm of Bosek, Leniowski, Sankowski, and Zych (2014)
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Summary

1. Improved framework for fast submodular maximization with matroid constraints

and a reduction to dynamic matroid independent set problems

2. A data structure for laminar matroids undergoing insertion and deletion updates

with O(log n) update time.

3. A data structure for maintaining a (1− ε)–approximate maximum weight

matchings in a vertex weighted graph (transversal matroid) with weight

decrement operations.
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New Framework

Explicit matroid

representation

ContinuousGreedy

Submodular function

oracle

≥ (1− e− ε)OPT

SOL

Decremental (c, d)
approx maximum
weight oracle

(1− ε)-approx
decremental

independence oracle

LazySamplingGreedy++
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