

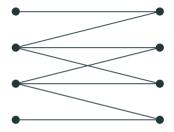
Multiplicative Auction Algorithms

Approximate Maximum Weight Bipartite Matching

Da Wei Zheng (UIUC) and Monika Henzinger (ISTA) Sep 13, 2023

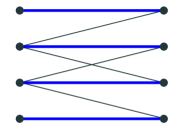
Paper presented at IPCO 2023

Bipartite graph $G = (U \cup V, E)$ with $n = |U \cup V|$, m = |E|.



Bipartite graph $G = (U \cup V, E)$ with $n = |U \cup V|$, m = |E|.

Maximum Cardinality Matching (MCM)

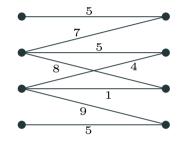


Bipartite graph $G = (U \cup V, E)$ with $n = |U \cup V|$, m = |E|.

Maximum Cardinality Matching (MCM)

Weights $w: E \to \mathbb{R}_{\geq 0}$.

Assume the smallest weight is 1 and the largest is W. Can assume $W = O(n/\varepsilon)$.



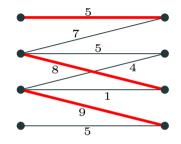
Bipartite graph $G = (U \cup V, E)$ with $n = |U \cup V|$, m = |E|.

Maximum Cardinality Matching (MCM)

Weights $w: E \to \mathbb{R}_{\geq 0}$.

Assume the smallest weight is 1 and the largest is W. Can assume $W = O(n/\varepsilon)$.

Maximum Weight Matching (MWM)



Bipartite graph $G = (U \cup V, E)$ with $n = |U \cup V|$, m = |E|.

Maximum Cardinality Matching (MCM)

Weights $w: E \to \mathbb{R}_{\geq 0}$.

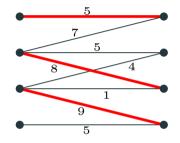
Assume the smallest weight is 1 and the largest is W. Can assume $W = O(n/\varepsilon)$.

Maximum Weight Matching (MWM)

Today: $(1 - \varepsilon)$ -approximate maximum weight matching

Goal: Find a matching *M* such that:

$$w(M) \ge (1 - \varepsilon)w(M^*)$$



History of Exact Bipartite MWM Algorithms

Year	Authors	Time bound
1890	Jacobi (written \sim 1836)	poly(n)
1946	Easterfield	2 ⁿ poly(n)
1953-64	von Neumann, Kuhn, Gleyzal, Munkres, Balinsky–Gomory	poly(n)
1969	Dinic–Kronrod	O(n ³)
1970-75	Edmonds–Karp, Tomizawa, Johnson	$\widetilde{O}(mn)$

History of Exact Bipartite MWM Algorithms

Year	Authors	Time bound
1890	Jacobi (written \sim 1836)	poly(n)
1946	Easterfield	2 ⁿ poly(n)
1953-64	von Neumann, Kuhn, Gleyzal, Munkres, Balinsky–Gomory	poly(n)
1969	Dinic–Kronrod	O(n ³)
1970-75	Edmonds–Karp, Tomizawa, Johnson	$\widetilde{O}(mn)$
1983	Gabow	$O(mn^{3/4}\log W)$
1988-97	Gabow–Tarjan, Orlin–Ahuja, Goldberg–Kennedy	$O(m\sqrt{n}\log(nW))$
1996	Cheriyan-Melhorn	$\widetilde{O}(n^{5/2}\log(nW))$
2006	Kao–Lam–Sung–Ting, Sankowski	$O(n^{\omega}W)$
2012	Duan-Su	$O(m\sqrt{n}\log W)$

History of Exact Bipartite MWM Algorithms

Year	Authors	Time bound
1890	Jacobi (written \sim 1836)	poly(<i>n</i>)
1946	Easterfield	2 ⁿ poly(<i>n</i>)
1953-64	von Neumann, Kuhn, Gleyzal, Munkres, Balinsky–Gomory	poly(n)
1969	Dinic–Kronrod	O(n ³)
1970-75	Edmonds–Karp, Tomizawa, Johnson	$\widetilde{O}(mn)$
1983	Gabow	0(mn ^{3/4} log W)
1988-97	Gabow–Tarjan, Orlin–Ahuja, Goldberg–Kennedy	$O(m\sqrt{n}\log(nW))$
1996	Cheriyan-Melhorn	$\widetilde{O}(n^{5/2}\log(nW))$
2006	Kao–Lam–Sung–Ting, Sankowski	$O(n^{\omega}W)$
2012	Duan-Su	$O(m\sqrt{n}\log W)$
2020	vd Brand-Lee-Nanogkai-Peng-Saranurak-Sidford-Song-Wang	$\widetilde{O}(m+n^{1.5})$
2022	Chen–Kyng–Liu–Peng–Probst Gutenberg–Sachdeva	m ^{1+o(1)}

Year	Authors	Approximation	Time bound
-	folklore greedy	1/2	$O(m \log n)$

Year	Authors	Approximation	Time bound
-	folklore greedy	1/2	$O(m \log n)$
1988	Gabow–Tarjan	$1-\varepsilon$	$O(m\sqrt{n}\log(n\varepsilon^{-1}))$

Year	Authors	Approximation	Time bound
-	folklore greedy	1/2	$O(m \log n)$
1988	Gabow–Tarjan	$1-\varepsilon$	$O(m\sqrt{n}\log(n\varepsilon^{-1}))$
1999/2003	Preis, Drake–Hougardy	1/2	O(m)
2003	Drake-Hougardy	$2/3 - \varepsilon$	$O(m arepsilon^{-1})$
2004	Pettie–Sanders	$2/3 - \varepsilon$	$O(m\log arepsilon^{-1})$
2010	Duan–Pettie, Hange–Hougardy	$3/4 - \varepsilon$	$O(m \log n \log \varepsilon^{-1})$
2014	Duan-Pettie	$1-\varepsilon$	$O(m arepsilon^{-1} \log arepsilon^{-1})$

Year	Authors	Approximation	Time bound
-	folklore greedy	1/2	$O(m \log n)$
1988	Gabow–Tarjan	$1-\varepsilon$	$O(m\sqrt{n}\log(n\varepsilon^{-1}))$
1999/2003	Preis, Drake–Hougardy	1/2	<i>O</i> (<i>m</i>)
2003	Drake-Hougardy	$2/3 - \varepsilon$	$O(m \varepsilon^{-1})$
2004	Pettie–Sanders	$2/3 - \varepsilon$	$O(m\log arepsilon^{-1})$
2010	Duan–Pettie, Hange–Hougardy	$3/4 - \varepsilon$	$O(m \log n \log \varepsilon^{-1})$
2014	Duan-Pettie	$1-\varepsilon$	$O(m arepsilon^{-1} \log arepsilon^{-1})$
2023	This talk (Bipartite only)	$1-\varepsilon$	$O(m \varepsilon^{-1})$

There is a lot of literature on dynamic matchings.

There is a lot of literature on dynamic matchings. Too much literature...

There is a lot of literature on dynamic matchings. Too much literature...

Variations

- Exact vs approximate (with various ratios 1/2 vs 2/3 vs (1 ε))
- General graphs vs bipartite graphs
- Maximal matching vs MCM vs MWM
- Fully dynamic vs decremental vs incremental
- Amortized vs average case vs worst case run times

There is a lot of literature on dynamic matchings. Too much literature...

Variations

- Exact vs approximate (with various ratios 1/2 vs 2/3 vs (1ε))
- General graphs vs bipartite graphs
- Maximal matching vs MCM vs MWM
- Fully dynamic vs decremental vs incremental
- Amortized vs average case vs worst case run times

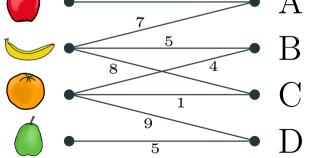
Results

[Wajc '20], [ACCSW '18], [BhaK '21], [PelS '16] [AAGPS '19], [BeFH '19], [ChaS '18], [NeiS '16], [Sank '16], [BhHN '16], [BaGS '11], [BhHN '17], [BhaK '19], [BDHSS '19], [Solo '16], [BhCH '17], [BerS '15], [BerS '16], [Kiss '22], [GLSSS '19], [BehK '22], [BeLM '22], [RoSW '22], [BeRR '22], [GupP '13], ... and many more ...

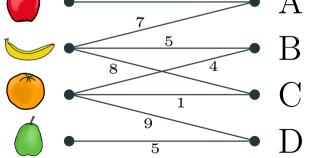
- 1. A simple auction algorithm for (1ε) -approximate MWM.
- 2. Efficient dynamic algorithm, supporting one-sided vertex deletion, and other-sided vertex insertion (simultaneously).

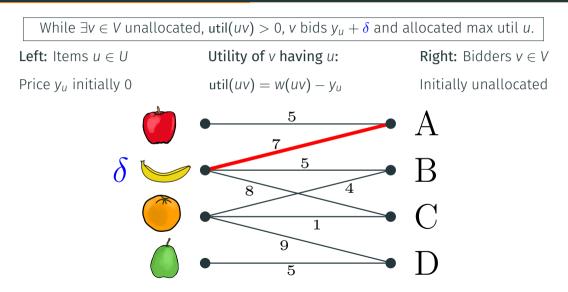
Multiplicative Auction Algorithm

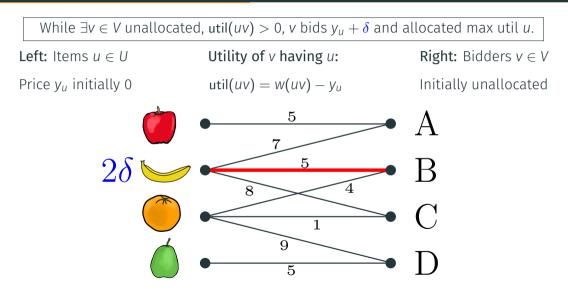
While $\exists v \in V$ unallocated, util(uv) > 0, v bids $y_u + \delta$ and allocated max util u.Left: Items $u \in U$ Utility of v having u:Right: Bidders $v \in V$ Price y_u initially 0util(uv) = $w(uv) - y_u$ Initially unallocated5A

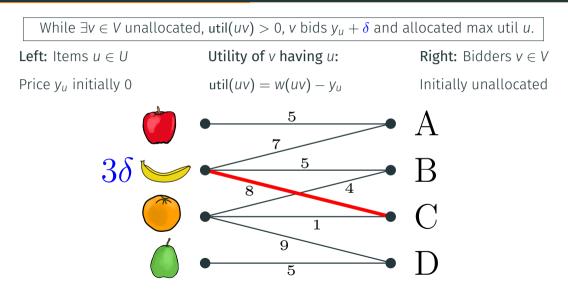


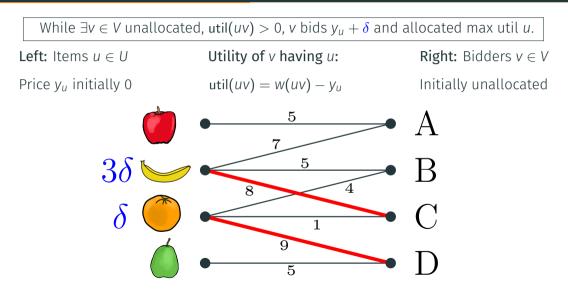
While $\exists v \in V$ unallocated, util(uv) > 0, v bids $y_u + \delta$ and allocated max util u.Left: Items $u \in U$ Utility of v having u:Right: Bidders $v \in V$ Price y_u initially 0util(uv) = $w(uv) - y_u$ Initially unallocated5A













While $\exists v \in V$ unallocated, $\max_u util(uv) > 0$, v bids $y_u + \delta$ and allocated max util u.

While $\exists v \in V$ unallocated, $\max_u util(uv) > 0$, v bids $y_u + \delta$ and allocated max util u.

Can be implemented in $O(m\delta^{-1}W)$ time, gets additive error of $n\delta$.

While $\exists v \in V$ unallocated, $\max_u util(uv) > 0$, v bids $y_u + \delta$ and allocated max util u.

Can be implemented in $O(m\delta^{-1}W)$ time, gets additive error of $n\delta$.

While $\exists v \in V$ unallocated, $\max_u util(uv) > 0$, v bids $y_u + \delta$ and allocated max util u.

Can be implemented in $O(m\delta^{-1}W)$ time, gets additive error of $n\delta$.

Multiplicative Auction Algorithm (NEW!)

While $\exists v \in V$ unallocated, util(uv) > $\varepsilon \cdot w(uv)$, v bids $y_u + \varepsilon \cdot w(uv)$ and allocated max util u.

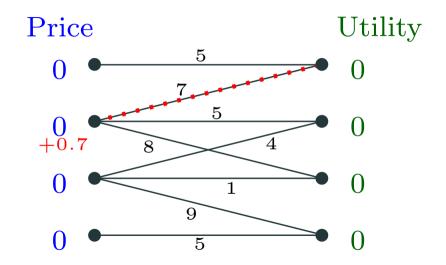
While $\exists v \in V$ unallocated, $\max_u util(uv) > 0$, v bids $y_u + \delta$ and allocated max util u.

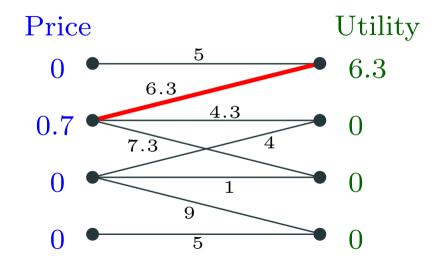
Can be implemented in $O(m\delta^{-1}W)$ time, gets additive error of $n\delta$.

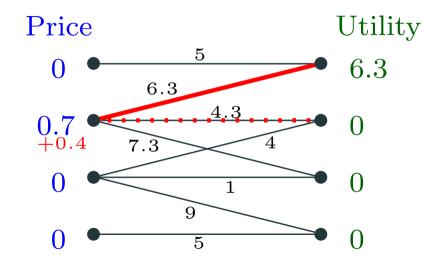
Multiplicative Auction Algorithm (NEW!)

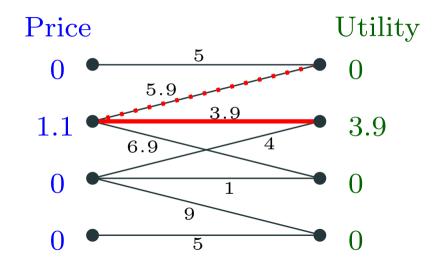
While $\exists v \in V$ unallocated, util(uv) > $\varepsilon \cdot w(uv)$, v bids $y_u + \varepsilon \cdot w(uv)$ and allocated max util u.

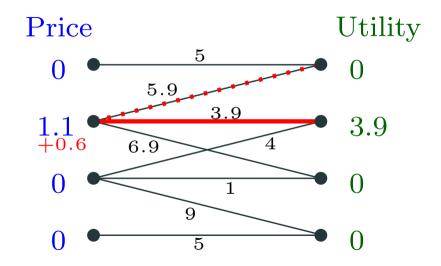
Can be implemented in time $O(m\varepsilon^{-1})$, gets multiplicative error of $(1 - \varepsilon)$.

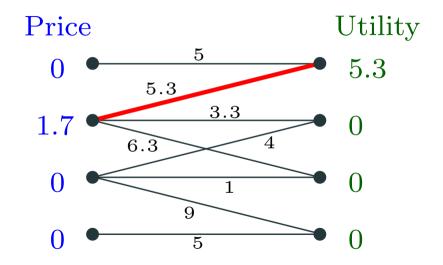


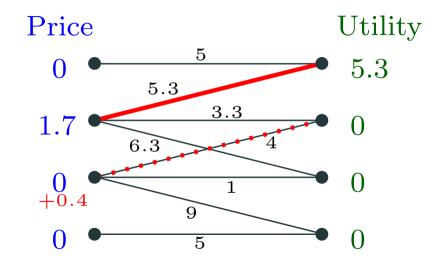


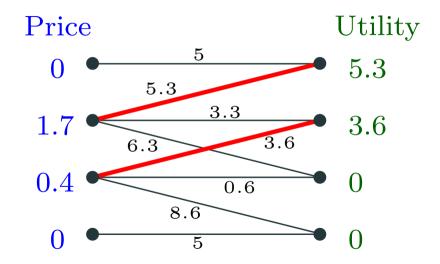


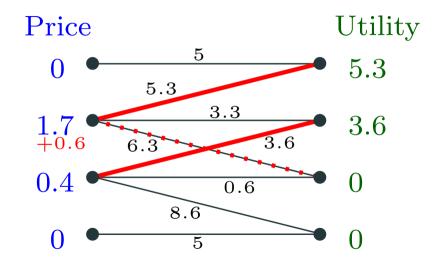


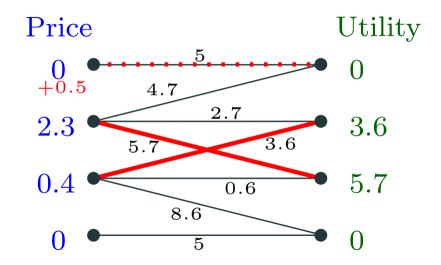


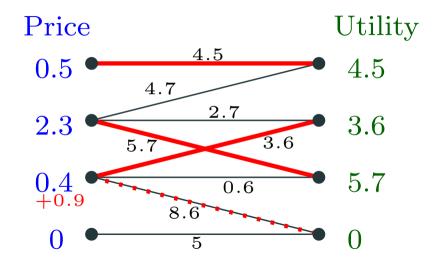


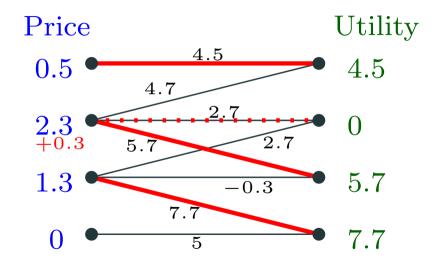


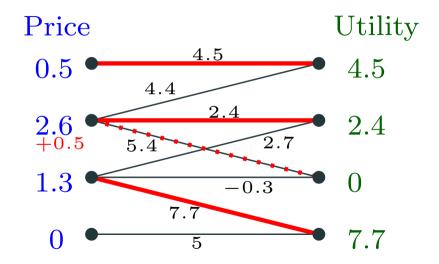


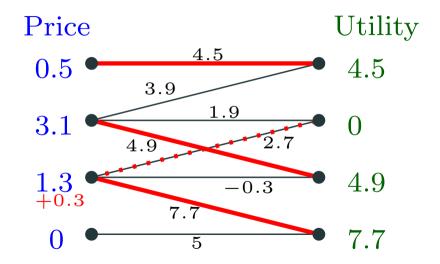


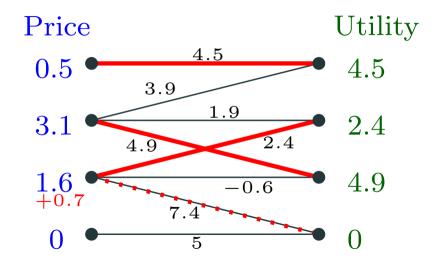


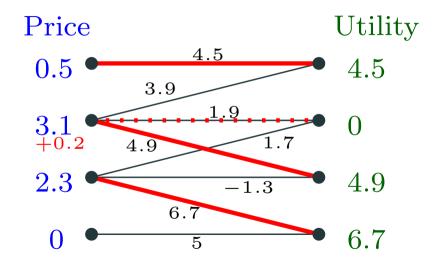




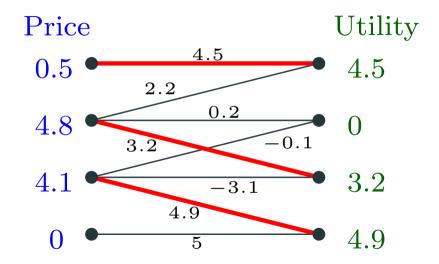








. . .



Implementation and runtime of the algorithm

1. Round all edges to powers of $(1 + \varepsilon)$, i.e. $(1 + \varepsilon)^0, (1 + \varepsilon)^1, (1 + \varepsilon)^2...$

- 1. Round all edges to powers of $(1 + \varepsilon)$, i.e. $(1 + \varepsilon)^0, (1 + \varepsilon)^1, (1 + \varepsilon)^2...$
- 2. For each edge uv we only need to consider them at weights $i\varepsilon w(uv)$ for $i = 1, ..., \ell$ where $\ell = 1/\varepsilon$.

We can also round these to powers of $(1 + \varepsilon)$.

$$w(uv) \approx (1+\varepsilon)^{k_0}$$

$$(\ell-1)\varepsilon w(uv) \approx (1+\varepsilon)^{k_1}$$

$$(\ell-2)\varepsilon w(uv) \approx (1+\varepsilon)^{k_2}$$

$$\vdots$$

$$\varepsilon w(uv) \approx (1+\varepsilon)^{k_\ell}$$

- 1. Round all edges to powers of $(1 + \varepsilon)$, i.e. $(1 + \varepsilon)^0, (1 + \varepsilon)^1, (1 + \varepsilon)^2...$
- 2. For each edge uv we only need to consider them at weights $i\varepsilon w(uv)$ for $i = 1, ..., \ell$ where $\ell = 1/\varepsilon$.

We can also round these to powers of $(1 + \varepsilon)$.

 ∀v ∈ V store "copies" of an edge in a (priority) queue after doing an initial sort.

$$w(uv) \approx (1+\varepsilon)^{k_0}$$

$$(\ell-1)\varepsilon w(uv) \approx (1+\varepsilon)^{k_1}$$

$$(\ell-2)\varepsilon w(uv) \approx (1+\varepsilon)^{k_2}$$

$$\vdots$$

$$\varepsilon w(uv) \approx (1+\varepsilon)^{k_\ell}$$

- 1. Round all edges to powers of $(1 + \varepsilon)$, i.e. $(1 + \varepsilon)^0, (1 + \varepsilon)^1, (1 + \varepsilon)^2...$
- 2. For each edge uv we only need to consider them at weights $i\varepsilon w(uv)$ for $i = 1, ..., \ell$ where $\ell = 1/\varepsilon$.

We can also round these to powers of $(1 + \varepsilon)$.

- ∀v ∈ V store "copies" of an edge in a (priority) queue after doing an initial sort.
- 4. Run the multiplicative auction algorithm by checking edges in (priority) queue order of decreasing weight.

$$w(uv) \approx (1+\varepsilon)^{k_0}$$

$$(\ell-1)\varepsilon w(uv) \approx (1+\varepsilon)^{k_1}$$

$$(\ell-2)\varepsilon w(uv) \approx (1+\varepsilon)^{k_2}$$

$$\vdots$$

$$\varepsilon w(uv) \approx (1+\varepsilon)^{k_\ell}$$

- 1. Round all edges to powers of $(1 + \varepsilon)$, i.e. $(1 + \varepsilon)^0, (1 + \varepsilon)^1, (1 + \varepsilon)^2...$
- 2. For each edge uv we only need to consider them at weights $i\varepsilon w(uv)$ for $i = 1, ..., \ell$ where $\ell = 1/\varepsilon$.

We can also round these to powers of $(1 + \varepsilon)$.

- ∀v ∈ V store "copies" of an edge in a (priority) queue after doing an initial sort.
- 4. Run the multiplicative auction algorithm by checking edges in (priority) queue order of decreasing weight.

 $O(m\varepsilon^{-1})$ to sort integers in $[0, \varepsilon^{-1} \log n]$, and $O(m\varepsilon^{-1})$ for the algorithm.

If there is a $v \in V$ that was matched to u, v becomes unmatched after deletion.

If there is a $v \in V$ that was matched to u, v becomes unmatched after deletion.

Treat v as unallocated and continue running multiplicative auction algorithm.

If there is a $v \in V$ that was matched to u, v becomes unmatched after deletion. Treat v as unallocated and continue running multiplicative auction algorithm.

Adding a new vertex $v \in V$ along with incident edges

Treat v as unallocated and run multiplicative auction algorithm.

Correctness of the algorithm

Variables x_{uv} for each edge $uv \in E$.

$$\max \sum_{uv \in E} w(uv) x_{uv}$$

s.t.
$$\sum_{v \in N(u)} x_{uv} \le 1 \qquad \forall u \in U$$
$$\sum_{u \in N(v)} x_{uv} \le 1 \qquad \forall v \in V$$
$$x_{uv} \ge 0 \qquad \forall uv \in E$$

Variables x_{uv} for each edge $uv \in E$.

$$\max \sum_{uv \in E} w(uv) x_{uv}$$

s.t.
$$\sum_{v \in N(u)} x_{uv} \le 1 \quad \forall u \in U$$

$$\sum_{u \in N(v)} x_{uv} \le 1 \qquad \forall v \in V$$

 $x_{uv} \ge 0 \qquad \qquad \forall uv \in E$

Variables y_u for $u \in U$, y_v for $v \in V$.

$$\min \quad \sum_{u \in U} y_u + \sum_{v \in V} y_v$$

s.t.
$$y_u + y_v \ge w(uv)$$
 $\forall uv \in E$
 $y_u \ge 0$ $\forall u \in U$

$$y_v \ge 0$$
 $\forall v \in V$

Variables x_{uv} for each edge $uv \in E$.

Variables y_u for $u \in U$, y_v for $v \in V$.

Approximate dominance: $[y_u + y_v \ge (1 - \varepsilon_1) \cdot w(uv) \ \forall uv \in E]$ & $[y_z \ge 0 \ \forall z]$.

Variables x_{uv} for each edge $uv \in E$.

Variables y_u for $u \in U$, y_v for $v \in V$.

Approximate dominance: $[y_u + y_v \ge (1 - \varepsilon_1) \cdot w(uv) \ \forall uv \in E]$ & $[y_z \ge 0 \ \forall z]$. Approx. comp. slackness: $[y_u + y_v \le (1 + \varepsilon_0) \cdot w(uv) \ \forall uv \in M]$ & $[y_z = 0 \ \forall z \notin M]$.

Comp. Slackness + Approx. dominance = Approx. Optimality

Approximate dominance: $[y_u + y_v \ge (1 - \varepsilon_1) \cdot w(uv) \ \forall uv \in E]$ & $[y_z \ge 0 \ \forall z]$. Approx. comp. slackness: $[y_u + y_v \le (1 + \varepsilon_0) \cdot w(uv) \ \forall uv \in M]$ & $[y_z = 0 \ \forall z \notin M]$.

Comp. Slackness + Approx. dominance = Approx. Optimality

Approximate dominance: $[y_u + y_v \ge (1 - \varepsilon_1) \cdot w(uv) \ \forall uv \in E]$ & $[y_z \ge 0 \ \forall z]$.Approx. comp. slackness: $[y_u + y_v \le (1 + \varepsilon_0) \cdot w(uv) \ \forall uv \in M]$ & $[y_z = 0 \ \forall z \notin M]$.

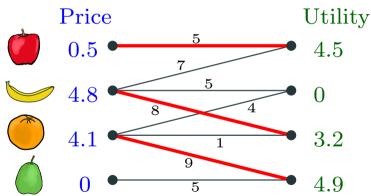
Let M^* be the maximum weight matching.

$$w(M) = \sum_{uv \in M} w(uv)$$

$$\geq \sum_{uv \in M} (1 + \varepsilon_0)^{-1} \cdot (y_u + y_v)$$
Approx. comp. slackness
$$= (1 + \varepsilon_0)^{-1} \sum_{z \in U \cup V} y_z$$
Complementarity
$$\geq (1 + \varepsilon_0)^{-1} \sum_{uv \in M^*} (y_u + y_v)$$
Non-negativity of y_z

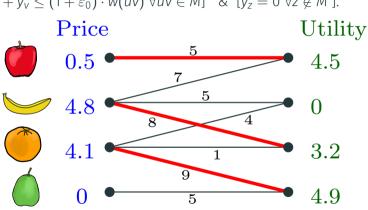
$$\geq (1 + \varepsilon_0)^{-1} (1 - \varepsilon_1) \cdot w(M^*)$$
Approximate dominance

Approximate dominance: $[y_u + y_v \ge (1 - \varepsilon_1) \cdot w(uv) \ \forall uv \in E]$ & $[y_z \ge 0 \ \forall z].$ Approx. comp. slackness: $[y_u + y_v \le (1 + \varepsilon_0) \cdot w(uv) \ \forall uv \in M]$ & $[y_z = 0 \ \forall z \notin M].$

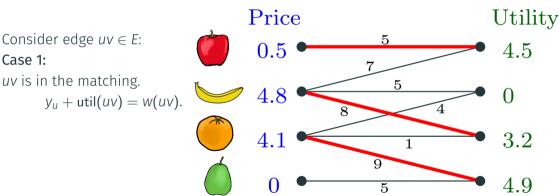


Approximate dominance: $[y_u + y_v \ge (1 - \varepsilon_1) \cdot w(uv) \ \forall uv \in E]$ & $[y_z \ge 0 \ \forall z].$ Approx. comp. slackness: $[y_u + y_v \le (1 + \varepsilon_0) \cdot w(uv) \ \forall uv \in M]$ & $[y_z = 0 \ \forall z \notin M].$

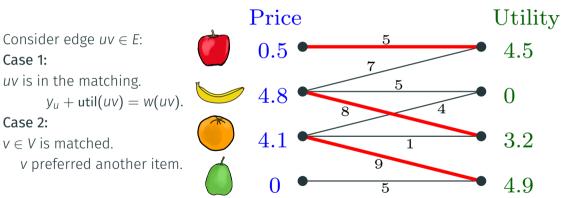
Consider edge $uv \in E$:



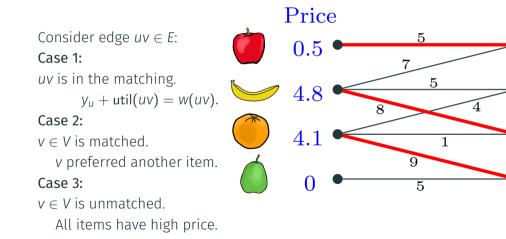
Approximate dominance: $[y_u + y_v \ge (1 - \varepsilon_1) \cdot w(uv) \ \forall uv \in E]$ & $[y_z \ge 0 \ \forall z].$ Approx. comp. slackness: $[y_u + y_v \le (1 + \varepsilon_0) \cdot w(uv) \ \forall uv \in M]$ & $[y_z = 0 \ \forall z \notin M].$



Approximate dominance: $[y_u + y_v \ge (1 - \varepsilon_1) \cdot w(uv) \ \forall uv \in E]$ & $[y_z \ge 0 \ \forall z].$ Approx. comp. slackness: $[y_u + y_v \le (1 + \varepsilon_0) \cdot w(uv) \ \forall uv \in M]$ & $[y_z = 0 \ \forall z \notin M].$



Approximate dominance: $[y_u + y_v \ge (1 - \varepsilon_1) \cdot w(uv) \ \forall uv \in E]$ & $[y_z \ge 0 \ \forall z].$ Approx. comp. slackness: $[y_u + y_v \le (1 + \varepsilon_0) \cdot w(uv) \ \forall uv \in M]$ & $[y_z = 0 \ \forall z \notin M].$



Utility

4.5

3.2

4.9

()

• We present a much simpler algorithm for approximate MWM.

- We present a much simpler algorithm for approximate MWM.
- The algorithm generalizes easily to (vertex) dynamic settings.

- $\cdot\,$ We present a much simpler algorithm for approximate MWM.
- The algorithm generalizes easily to (vertex) dynamic settings.

- We present a much simpler algorithm for approximate MWM.
- The algorithm generalizes easily to (vertex) dynamic settings.

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?

- We present a much simpler algorithm for approximate MWM.
- The algorithm generalizes easily to (vertex) dynamic settings.

- 1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
- 2. Edge insertions / deletions? Fully dynamic?

- $\cdot\,$ We present a much simpler algorithm for approximate MWM.
- The algorithm generalizes easily to (vertex) dynamic settings.

- 1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
- 2. Edge insertions / deletions? Fully dynamic?
- 3. Simple parallel / distributed / streaming algorithms?

- $\cdot\,$ We present a much simpler algorithm for approximate MWM.
- The algorithm generalizes easily to (vertex) dynamic settings.

- 1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
- 2. Edge insertions / deletions? Fully dynamic?
- 3. Simple parallel / distributed / streaming algorithms?
- 4. General graphs?

- $\cdot\,$ We present a much simpler algorithm for approximate MWM.
- The algorithm generalizes easily to (vertex) dynamic settings.

- 1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
- 2. Edge insertions / deletions? Fully dynamic?
- 3. Simple parallel / distributed / streaming algorithms?
- 4. General graphs?
- 5. (Decremental / incremental) (1 ε)-approximate SSSP / transshipment?