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Bipartite graph G = (UU V,E)
with n = |UU V|, m = |E|.

Maximum Cardinality Matching (MCM)

Weights w:E— Rzo.

Assume the smallest weight is 1 and the
largest is W. Can assume W = O(n/e).

Maximum Weight Matching (MWM)
Today: (1 — e)-approximate maximum weight matching

Goal: Find a matching M such that: ’W(M) > (1—¢e)w(M*)
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1969 Dinic-Kronrod o(n%)
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Results

[Wajc '20], [ACCSW "18], [BhaK '21], [PelS "16] [AAGPS "19], [BeFH "19], [ChaS "18], [NeiS

"16], [Sank "16], [BhHN "16], [BaGS "11], [BhHN "17], [BhaK "19], [BDHSS "19], [Solo "16],

[BhCH "17], [BerS "15], [BerS "16], [Kiss '22], [GLSSS "19], [BehK '22], [BeLM '22], [RoSW
'22], [BeRR '22], [GupP "13], ... and many more ... >



1. A simple auction algorithm for (1 — €)-approximate MWM.

2. Efficient dynamic algorithm, supporting one-sided vertex deletion, and
other-sided vertex insertion (simultaneously).
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New algorithm

Original Auction Algorithm

’ While 3v € V unallocated, max, util(uv) > 0, v bids y, + § and allocated max util u. ‘

Can be implemented in O(m§~'W) time, gets additive error of né.

Multiplicative Auction Algorithm (NEW!)

While v € V unallocated, util(uv) > ¢ - w(uv), v bids y, + - w(uv) and allocated max util u. ‘

Can be implemented in time O(me~"), gets multiplicative error of (1 — &).
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Implementation and runtime of the algorithm
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o L Deww) Qe o hare p— /e,
(= 2)ew(w) = (1 +¢€)F> . We can also round these to powers of (1+¢).
3. Vv € Vstore “copies” of an edge in a
cw(uv) ~ (1 + )k (priority) queue after doing an initial sort.
e — — — — — = 2 — - — -~ - )

4. Run the multiplicative auction algorithm by
checking edges in (priority) queue order of
decreasing weight.

O(me~") to sort integers in [0, " log n], and O(me~") for the algorithm.
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Dynamic algorithm details

Deleting a vertex u € U

If there is a v € V that was matched to u, v becomes unmatched after deletion.

Treat v as unallocated and continue running multiplicative auction algorithm.
Adding a new vertex v € V along with incident edges

Treat v as unallocated and run multiplicative auction algorithm.
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s.t. Z Xy <1 Yueu st oyu+yw>wv) VYuvek
veN(u) Yy >0 VueU
ueN(v)
Xyy > 0 Yuv e E
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Approximate dominance: [y, +y, > (1 —&1) - w(uv) Yuv € E] & ly, > 0Vz].
Approx. comp. slackness: [y, + vy < (1+¢eg) - w(uv) VuveM] & [y, =0VzgM].
Let M* be the maximum weight matching.

w(M) = Z w(uv)

uvem
> (T4e0) " (Vu+w) Approx. comp. slackness
uvem
(14 ¢e0)” Z v, Complementarity
zeuuv
>(1+ 50)_1 Z (Yu + W) Non-negativity of y,
uvem*

> (1420)7'(1—&1) - w(M*) Approximate dominance
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Comp. Slackness + Approx. Dominance(example with ¢ = 0.1)

Approximate dominance: [y, +y, > (1 —&1) - w(uv) Yuv € E] & ly, > 0Vz].
Approx. comp. slackness: [y, + vy < (1+¢eg) - w(uv) VuveM] & [y, =0VzgM].
i Utility

Consider edge uv € E:

Case 1: 4.5
uv is in the matching.

Yy + util(uv) = w(uv). 0

Case 2:

v € Vis matched. 3.2

v preferred another item.
Case 3: 4.9

v € Vis unmatched.
All items have high price. 17
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Conclusion

- We present a much simpler algorithm for approximate MWM.

- The algorithm generalizes easily to (vertex) dynamic settings.
Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
2. Edge insertions / deletions? Fully dynamic?

3. Simple parallel / distributed / streaming algorithms?

4. General graphs?

5. (Decremental / incremental) (1 — €)-approximate SSSP / transshipment?
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