Multiplicative Auction Algorithms
Approximate Maximum Weight Bipartite Matching

Da Wei Zheng (UIUC) and Monika Henzinger (ISTA)
Sep 13, 2023

Paper presented at IPCO 2023

Matchings in bipartite graphs

Bipartite graph G = (UU V,E)
with n =|UU V|, m = |E|. °

Matchings in bipartite graphs

Bipartite graph G = (UU V,E)

with n = |UU V|, m = |E|. ® ™
. L . ®

Maximum Cardinality Matching (MCM)
°

Matchings in bipartite graphs

Bipartite graph G = (UU V,E)
with n = |UU V|, m = |E|.

Maximum Cardinality Matching (MCM)

Weights w:E— Rzo.

Assume the smallest weight is 1 and the
largest is W. Can assume W = O(n/e).

Matchings in bipartite graphs

Bipartite graph G = (UU V,E)
with n = |UU V|, m = |E|.

Maximum Cardinality Matching (MCM)

Weights w:E— Rzo.

Assume the smallest weight is 1 and the
largest is W. Can assume W = O(n/e).

Maximum Weight Matching (MWM)

Matchings in bipartite graphs

Bipartite graph G = (UU V,E)
with n = |UU V|, m = |E|.

Maximum Cardinality Matching (MCM)

Weights w:E— Rzo.

Assume the smallest weight is 1 and the
largest is W. Can assume W = O(n/e).

Maximum Weight Matching (MWM)
Today: (1 — e)-approximate maximum weight matching

Goal: Find a matching M such that: ’W(M) > (1—¢e)w(M*)

History of Exact Bipartite MWM Algorithms

Year Authors Time bound
1890 Jacobi (written ~1836) poly(n)
1946 Easterfield 2" poly(n)
1953-64 von Neumann, Kuhn, Gleyzal, Munkres, Balinsky-Gomory poly(n)
1969 Dinic-Kronrod o(n%)
1970-75 Edmonds-Karp, Tomizawa, Johnson 5(mn)

History of Exact Bipartite MWM Algorithms

Year Authors Time bound
1890 Jacobi (written ~1836) poly(n)
1946 Easterfield 2" poly(n)
1953-64 von Neumann, Kuhn, Gleyzal, Munkres, Balinsky-Gomory poly(n)
1969 Dinic-Kronrod o(n%)
1970-75 Edmonds-Karp, Tomizawa, Johnson 5(mn)
1983 Gabow o(mn3/*log W)
1988-97 Gabow-Tarjan, Orlin-Ahuja, Goldberg-Kennedy O(m+/nlog(nW))
1996 Cheriyan-Melhorn 0(n5/2 log(nW))
2006 Kao-Lam-Sung-Ting, Sankowski O(n“w)
2012 Duan-Su O(m+/nlog W)

History of Exact Bipartite MWM Algorithms

Year Authors Time bound
1890 Jacobi (written ~1836) poly(n)
1946 Easterfield 2" poly(n)
1953-64 von Neumann, Kuhn, Gleyzal, Munkres, Balinsky-Gomory poly(n)
1969 Dinic-Kronrod o(n%)
1970-75 Edmonds-Karp, Tomizawa, Johnson 5(mn)
1983 Gabow o(mn3/*log W)
1988-97 Gabow-Tarjan, Orlin-Ahuja, Goldberg-Kennedy O(m+/nlog(nW))
1996 Cheriyan-Melhorn 0(n5/2 log(nW))
2006 Kao-Lam-Sung-Ting, Sankowski O(n“w)
2012 Duan-Su 0(m+/n log W)
2020 | vd Brand-Lee-Nanogkai-Peng-Saranurak-Sidford-Song-Wang O(m + n*5)
2022 Chen-Kyng-Liu-Peng-Probst Gutenberg-Sachdeva m’+o()

History of Approximate MWM Algorithms

Year ‘ Authors ‘ Approximation ‘ Time bound
- | folklore greedy | 1/2 | O(mlogn)

History of Approximate MWM Algorithms

Year ‘ Authors ‘ Approximation ‘ Time bound
- folklore greedy 1/2 O(mlogn)
1988 Gabow-Tarjan 1—¢ O(my/nlog(ne=))

History of Approximate MWM Algorithms

Year Authors Approximation Time bound

- folklore greedy 1/2 O(mlogn)
1988 Gabow-Tarjan 1—¢ O(my/nlog(ne=))

1999/2003 Preis, Drake-Hougardy 1/2 o(m)

2003 Drake-Hougardy 2/3—¢ O(me™")
2004 Pettie-Sanders 2/3—¢ O(mloge™")
2010 Duan-Pettie, Hange-Hougardy 3/b—¢ O(mlognloge™")
2014 Duan-Pettie 1—¢ O(me~"loge™")

History of Approximate MWM Algorithms

Year Authors Approximation Time bound

- folklore greedy 1/2 O(mlogn)
1988 Gabow-Tarjan 1—¢ O(my/nlog(ne=))

1999/2003 Preis, Drake-Hougardy 1/2 o(m)

2003 Drake-Hougardy 2/3—¢ O(me™")
2004 Pettie-Sanders 2/3—¢ O(mloge™")
2010 Duan-Pettie, Hange-Hougardy 3/b—¢ O(mlognloge™")
2014 Duan-Pettie 1—¢ O(me~"loge™")
2023 This talk (Bipartite only) 1—¢ O(me™")

History of Dynamic Matchings Algorithms

There is a lot of literature on dynamic matchings.

History of Dynamic Matchings Algorithms

There is a lot of literature on dynamic matchings. Too much literature...

History of Dynamic Matchings Algorithms

There is a lot of literature on dynamic matchings. Too much literature...

Variations

- Exact vs approximate (with various ratios 1/2 vs 2/3 vs (1 —€))
- General graphs vs bipartite graphs

- Maximal matching vs MCM vs MWM

- Fully dynamic vs decremental vs incremental

- Amortized vs average case vs worst case run times

History of Dynamic Matchings Algorithms

There is a lot of literature on dynamic matchings. Too much literature...
Variations

- Exact vs approximate (with various ratios 1/2 vs 2/3 vs (1 —€))
- General graphs vs bipartite graphs

- Maximal matching vs MCM vs MWM

- Fully dynamic vs decremental vs incremental

- Amortized vs average case vs worst case run times

Results

[Wajc '20], [ACCSW "18], [BhaK '21], [PelS "16] [AAGPS "19], [BeFH "19], [ChaS "18], [NeiS

"16], [Sank "16], [BhHN "16], [BaGS "11], [BhHN "17], [BhaK "19], [BDHSS "19], [Solo "16],

[BhCH "17], [BerS "15], [BerS "16], [Kiss '22], [GLSSS "19], [BehK '22], [BeLM '22], [RoSW
'22], [BeRR '22], [GupP "13], ... and many more ... >

1. A simple auction algorithm for (1 — €)-approximate MWM.

2. Efficient dynamic algorithm, supporting one-sided vertex deletion, and
other-sided vertex insertion (simultaneously).

Multiplicative Auction Algorithm

The auction algorithm of Bertsekas ‘81 and Demange—-Gale-Sotomayor '86

The auction algorithm of Bertsekas ‘81 and Demange—-Gale-Sotomayor '86

While 3v € V unallocated, util(uv) > 0, v bids y, + ¢ and allocated max util u.

Left: Items u e U Utility of v having u: Right: Biddersv e V

Price yy initially 0 util(uv) = w(uv) —yy Initially unallocated

O Q® =

@
—
D
O

The auction algorithm of Bertsekas ‘81 and Demange—-Gale-Sotomayor '86

While 3v € V unallocated, util(uv) > 0, v bids y, + ¢ and allocated max util u.

Left: Items u e U Utility of v having u: Right: Biddersv e V

Price yy initially 0 util(uv) = w(uv) —yy Initially unallocated

O Q® =

@
—
D
O

The auction algorithm of Bertsekas ‘81 and Demange—-Gale-Sotomayor '86

While 3v € V unallocated, util(uv) > 0, v bids y, + ¢ and allocated max util u.

Left: Items u e U Utility of v having u: Right: Biddersv e V

Price yy initially 0 util(uv) = w(uv) —yy Initially unallocated

0

O Q® =

@
—
D
O

The auction algorithm of Bertsekas ‘81 and Demange—-Gale-Sotomayor '86

While 3v € V unallocated, util(uv) > 0, v bids y, + ¢ and allocated max util u.

Left: Items u e U Utility of v having u: Right: Biddersv e V

Price yy initially 0 util(uv) = w(uv) —yy Initially unallocated

O Q® =

The auction algorithm of Bertsekas ‘81 and Demange—-Gale-Sotomayor '86

While 3v € V unallocated, util(uv) > 0, v bids y, + ¢ and allocated max util u.

Left: Items u e U Utility of v having u: Right: Biddersv e V

Price yy initially 0 util(uv) = w(uv) —yy Initially unallocated

O Q® =

The auction algorithm of Bertsekas ‘81 and Demange—-Gale-Sotomayor '86

While 3v € V unallocated, util(uv) > 0, v bids y, + ¢ and allocated max util u.

Left: Items u e U Utility of v having u: Right: Biddersv e V

Price yy initially 0 util(uv) = w(uv) —yy Initially unallocated

O Q® =

The auction algorithm of Bertsekas ‘81 and Demange—-Gale-Sotomayor '86

While 3v € V unallocated, util(uv) > 0, v bids y, + ¢ and allocated max util u.

Left: Items u e U Utility of v having u: Right: Biddersv e V

Price yy initially 0 util(uv) = w(uv) —yy Initially unallocated

O Q® =

New algorithm

Original Auction Algorithm

’ While 3v € V unallocated, max, util(uv) > 0, v bids y, + § and allocated max util u. ‘

New algorithm

Original Auction Algorithm

’ While 3v € V unallocated, max, util(uv) > 0, v bids y, + § and allocated max util u. ‘

Can be implemented in O(m§~'W) time, gets additive error of né.

New algorithm

Original Auction Algorithm

’ While 3v € V unallocated, max, util(uv) > 0, v bids y, + § and allocated max util u. ‘

Can be implemented in O(m§~'W) time, gets additive error of né.

New algorithm

Original Auction Algorithm

’ While 3v € V unallocated, max, util(uv) > 0, v bids y, + § and allocated max util u. ‘

Can be implemented in O(m§~'W) time, gets additive error of né.

Multiplicative Auction Algorithm (NEW!)

While v € V unallocated, util(uv) > ¢ - w(uv), v bids y, + - w(uv) and allocated max util u.

New algorithm

Original Auction Algorithm

’ While 3v € V unallocated, max, util(uv) > 0, v bids y, + § and allocated max util u. ‘

Can be implemented in O(m§~'W) time, gets additive error of né.

Multiplicative Auction Algorithm (NEW!)

While v € V unallocated, util(uv) > ¢ - w(uv), v bids y, + - w(uv) and allocated max util u. ‘

Can be implemented in time O(me~"), gets multiplicative error of (1 — &).

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
0

0
0
0

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
6.3

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
0o e 6.3
0.7 0
+0.
0 0
0 0

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
0

3.9

0

0

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
0

3.9

0

0

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
5.3

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
5.3

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
5.3

3.6

0

0

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
5.3

3.6

0

0

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
0
+0.5
2.3 3.6
0.4 5.7
0 0

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
4.5

3.6

5.7

0

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
4.5

0

5.7

7.7

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
0.5 @ ' 4.5
2.6 2.4
0.5
1.3 0

7.7

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
0.5 @ 4.5
3.1 0
1.3 4.9
10.3

0 7.7

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
0.5 @ 4.5
3.1 2.4
1.6 4.9
0.7

0 0

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
4.5

0

4.9

6.7

10

Example of the multiplicative auction algorithm with e = 0.1

10

Example of the multiplicative auction algorithm with e = 0.1

Price Utility
4.5

0

3.2

4.9

10

Implementation and runtime of the algorithm

1

Implementation details

1. Round all edges to powers of (1+¢), i.e.
(1+e)°, 14+, (1+e)...

12

Implementation details

1. Round all edges to powers of (1+¢), i.e.
(1+e)°% (1 +e), (1+¢e)...

2. For each edge uv we only need to consider
them at weights iew(uv) fori=1,...,¢
where £ =1/e.

We can also round these to powers of (1+¢).

12

Implementation details

1. Round all edges to powers of (1+¢), i.e.
(1+e)°(1+e), (1 +¢e)...

w(uw) ~ (1 + £)*o 2. For each edge uv we only need to consider

o o them at weights iew(uv) fori=1,...,¢
o (LoDew) (L) 0 hare g — /e,
(£ — 2)ew(w) =~ (1 +¢)* We can also round these to powers of (1+¢).

3. Vv € Vstore “copies” of an edge in a
(priority) queue after doing an initial sort.

12

Implementation details

1. Round all edges to powers of (1+¢), i.e.
(1+e)° 1+, (1+¢)...

w(uw) ~ (1 + £)*o 2. For each edge uv we only need to consider

o o them at weights iew(uv) fori=1,...,¢
o L Deww) Qe o hare p— /e,
(= 2)ew(w) = (1 +¢€)F> . We can also round these to powers of (1+¢).
3. Vv € Vstore “copies” of an edge in a
cw(uv) ~ (1 +)k (priority) queue after doing an initial sort.
e — — — — — = 2 — - — -~ -)

4. Run the multiplicative auction algorithm by
checking edges in (priority) queue order of
decreasing weight.

12

Implementation details

1. Round all edges to powers of (1+¢), i.e.
(1+e)° 1+, (1+¢)...

w(uw) ~ (1 + £)*o 2. For each edge uv we only need to consider

o o them at weights iew(uv) fori=1,...,¢
o L Deww) Qe o hare p— /e,
(= 2)ew(w) = (1 +¢€)F> . We can also round these to powers of (1+¢).
3. Vv € Vstore “copies” of an edge in a
cw(uv) ~ (1 +)k (priority) queue after doing an initial sort.
e — — — — — = 2 — - — -~ -)

4. Run the multiplicative auction algorithm by
checking edges in (priority) queue order of
decreasing weight.

O(me~") to sort integers in [0, " log n], and O(me~") for the algorithm.

12

Dynamic algorithm details

Deleting a vertex u € U

13

Dynamic algorithm details

Deleting a vertex u € U

If there is a v € V that was matched to u, v becomes unmatched after deletion.

13

Dynamic algorithm details

Deleting a vertex u € U

If there is a v € V that was matched to u, v becomes unmatched after deletion.

Treat v as unallocated and continue running multiplicative auction algorithm.

13

Dynamic algorithm details

Deleting a vertex u € U

If there is a v € V that was matched to u, v becomes unmatched after deletion.

Treat v as unallocated and continue running multiplicative auction algorithm.
Adding a new vertex v € V along with incident edges

Treat v as unallocated and run multiplicative auction algorithm.

13

Correctness of the algorithm

LP for MWM

Variables x,, for each edge uv € E.

max Z w(uv)Xyy

uvek

s.t. Z Xy <1 YueUu
veN(u)
Z Xyy <1 WeV
ueN(v)

Xyy > 0 Yuv ek

15

LP for MWM

Variables x,, for each edge uv € E. Variables y, foru e U, y, forv e V.
max Z w(uv)Xyy min Zyu + Z)/v
uvek uel veV
s.t. Z Xy <1 Yueu st oyu+yw>wv) VYuvek
veN(u) Yy >0 VueU
ueN(v)

Xyy > 0 Yuv ek

15

LP for MWM

Variables x,, for each edge uv € E.

max Z w(uv)Xyy

uvek

s.t. Z Xy <1 YueUu
veN(u)
ZXW§1 WeV
ueN(v)
Xyy > 0 Yuv e E

Approximate dominance: [y, + vy > (1 —&1) - w(uv) Yuv € E] &

Variables y, foru e U, y, forv e V.

min Zyu +Zyv

uel veV
st. yu+y,>w(uv) Vuvek
Yy >0 YueU
yy >0 Vv eV
[Y% > 0Vz].

15

LP for MWM

Variables x,, for each edge uv € E. Variables y, foru e U, y, forv e V.
max Z w(uv)Xyy min Zyu + Zyv
uvek uel veV
s.t. Z Xy <1 Yueu st oyu+yw>wv) VYuvek
veN(u) Yy >0 VueU
ueN(v)
Xyy > 0 Yuv e E
Approximate dominance: [y, + vy > (1 —&1) - w(uv) Yuv € E] & [y, > 0Vz].

Approx. comp. slackness: [y, +yy < (1+¢eg) -w(uv) VuveM] & [y, =0vVz¢ M]

15

Comp. Slackness + Approx. dominance = Approx. Optimality

Approximate dominance: [y, +y, > (1 —&1) - w(uv) Yuv € E] & ly, > 0Vz].
Approx. comp. slackness: [y, + vy < (1+¢eg) - w(uv) VuveM] & [y, =0VzgM].

Comp. Slackness + Approx. dominance = Approx. Optimality

Approximate dominance: [y, +y, > (1 —&1) - w(uv) Yuv € E] & ly, > 0Vz].
Approx. comp. slackness: [y, + vy < (1+¢eg) - w(uv) VuveM] & [y, =0VzgM].
Let M* be the maximum weight matching.

w(M) = Z w(uv)

uvem
> (T4e0) " (Vu+w) Approx. comp. slackness
uvem
(14 ¢e0)” Z v, Complementarity
zeuuv
>(1+ 50)_1 Z (Yu + W) Non-negativity of y,
uvem*

> (1420)7'(1—&1) - w(M*) Approximate dominance

Comp. Slackness + Approx. Dominance(example with ¢ = 0.1)

Approximate dominance: [y, +y, > (1 —&1) - w(uv) Yuv € E] & ly, > 0Vz].
Approx. comp. slackness: [y, + vy < (1+¢eg) - w(uv) VuveM] & [y, =0VzgM].

Utility
4.5

0

3.2

4.9

Comp. Slackness + Approx. Dominance(example with ¢ = 0.1)

Approximate dominance: [y, +y, > (1 —&1) - w(uv) Yuv € E] & ly, > 0Vz].
Approx. comp. slackness: [y, + vy < (1+¢eg) - w(uv) VuveM] & [y, =0VzgM].
i Utility
Consider edge uv € E:
4.5
0
3.2

4.9

Comp. Slackness + Approx. Dominance(example with ¢ = 0.1)

Approximate dominance: [y, +y, > (1 —&1) - w(uv) Yuv € E] & ly, > 0Vz].
Approx. comp. slackness: [y, + vy < (1+¢eg) - w(uv) VuveM] & [y, =0VzgM].
i Utility
Consider edge uv € E:
Case 1: 4.5
uv is in the matching.
Yy + util(uv) = w(uv). 0
3.2

4.9

Comp. Slackness + Approx. Dominance(example with ¢ = 0.1)

Approximate dominance: [y, +y, > (1 —&1) - w(uv) Yuv € E] & ly, > 0Vz].
Approx. comp. slackness: [y, + vy < (1+¢eg) - w(uv) VuveM] & [y, =0VzgM].
i Utility

Consider edge uv € E:

Case 1: 4.5
uv is in the matching.

Yy + util(uv) = w(uv). 0
Case 2:
v € Vis matched. 4.1 3.2

v preferred another item. o
0o e 5 4.9

Comp. Slackness + Approx. Dominance(example with ¢ = 0.1)

Approximate dominance: [y, +y, > (1 —&1) - w(uv) Yuv € E] & ly, > 0Vz].
Approx. comp. slackness: [y, + vy < (1+¢eg) - w(uv) VuveM] & [y, =0VzgM].
i Utility

Consider edge uv € E:

Case 1: 4.5
uv is in the matching.

Yy + util(uv) = w(uv). 0

Case 2:

v € Vis matched. 3.2

v preferred another item.
Case 3: 4.9

v € Vis unmatched.
All items have high price. 17

Conclusion

- We present a much simpler algorithm for approximate MWM.

Conclusion

- We present a much simpler algorithm for approximate MWM.

- The algorithm generalizes easily to (vertex) dynamic settings.

Conclusion

- We present a much simpler algorithm for approximate MWM.

- The algorithm generalizes easily to (vertex) dynamic settings.

Open questions

Conclusion

- We present a much simpler algorithm for approximate MWM.

- The algorithm generalizes easily to (vertex) dynamic settings.
Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?

Conclusion

- We present a much simpler algorithm for approximate MWM.

- The algorithm generalizes easily to (vertex) dynamic settings.
Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?

2. Edge insertions / deletions? Fully dynamic?

Conclusion

- We present a much simpler algorithm for approximate MWM.

- The algorithm generalizes easily to (vertex) dynamic settings.
Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
2. Edge insertions / deletions? Fully dynamic?

3. Simple parallel / distributed / streaming algorithms?

Conclusion

- We present a much simpler algorithm for approximate MWM.

- The algorithm generalizes easily to (vertex) dynamic settings.
Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
2. Edge insertions / deletions? Fully dynamic?
3. Simple parallel / distributed / streaming algorithms?

4. General graphs?

Conclusion

- We present a much simpler algorithm for approximate MWM.

- The algorithm generalizes easily to (vertex) dynamic settings.
Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
2. Edge insertions / deletions? Fully dynamic?

3. Simple parallel / distributed / streaming algorithms?

4. General graphs?

5. (Decremental / incremental) (1 — €)-approximate SSSP / transshipment?

	Introduction

