
Multiplicative Auction Algorithms
Approximate Maximum Weight Bipartite Matching

Da Wei Zheng (UIUC) and Monika Henzinger (ISTA)
Sep 13, 2023

Paper presented at IPCO 2023

1

Matchings in bipartite graphs

Bipartite graph G = (U ∪ V, E)
with n = |U ∪ V|, m = |E|.

Maximum Cardinality Matching (MCM)

Weights w : E→ R≥0.

Assume the smallest weight is 1 and the
largest is W. Can assume W = O(n/ε).

Maximum Weight Matching (MWM)
Today: (1− ε)-approximate maximum weight matching

Goal: Find a matching M such that: w(M) ≥ (1− ε)w(M∗)

2

Matchings in bipartite graphs

Bipartite graph G = (U ∪ V, E)
with n = |U ∪ V|, m = |E|.

Maximum Cardinality Matching (MCM)

Weights w : E→ R≥0.

Assume the smallest weight is 1 and the
largest is W. Can assume W = O(n/ε).

Maximum Weight Matching (MWM)
Today: (1− ε)-approximate maximum weight matching

Goal: Find a matching M such that: w(M) ≥ (1− ε)w(M∗)

2

Matchings in bipartite graphs

Bipartite graph G = (U ∪ V, E)
with n = |U ∪ V|, m = |E|.

Maximum Cardinality Matching (MCM)

Weights w : E→ R≥0.

Assume the smallest weight is 1 and the
largest is W. Can assume W = O(n/ε).

Maximum Weight Matching (MWM)

5

7

5

48

1

9

5

Today: (1− ε)-approximate maximum weight matching

Goal: Find a matching M such that: w(M) ≥ (1− ε)w(M∗)

2

Matchings in bipartite graphs

Bipartite graph G = (U ∪ V, E)
with n = |U ∪ V|, m = |E|.

Maximum Cardinality Matching (MCM)

Weights w : E→ R≥0.

Assume the smallest weight is 1 and the
largest is W. Can assume W = O(n/ε).

Maximum Weight Matching (MWM)

5

7

5

48

1

9

5

Today: (1− ε)-approximate maximum weight matching

Goal: Find a matching M such that: w(M) ≥ (1− ε)w(M∗)

2

Matchings in bipartite graphs

Bipartite graph G = (U ∪ V, E)
with n = |U ∪ V|, m = |E|.

Maximum Cardinality Matching (MCM)

Weights w : E→ R≥0.

Assume the smallest weight is 1 and the
largest is W. Can assume W = O(n/ε).

Maximum Weight Matching (MWM)

5

7

5

48

1

9

5

Today: (1− ε)-approximate maximum weight matching

Goal: Find a matching M such that: w(M) ≥ (1− ε)w(M∗)
2

History of Exact Bipartite MWM Algorithms

Year Authors Time bound
1890 Jacobi (written ∼1836) poly(n)
1946 Easterfield 2n poly(n)

1953-64 von Neumann, Kuhn, Gleyzal, Munkres, Balinsky–Gomory poly(n)
1969 Dinic–Kronrod O(n3)

1970-75 Edmonds–Karp, Tomizawa, Johnson Õ(mn)

1983 Gabow O(mn3/4 logW)

1988-97 Gabow–Tarjan, Orlin–Ahuja, Goldberg–Kennedy O(m
√
n log(nW))

1996 Cheriyan–Melhorn Õ(n5/2 log(nW))

2006 Kao–Lam–Sung–Ting, Sankowski O(nωW)

2012 Duan–Su O(m
√
n logW)

2020 vd Brand-Lee-Nanogkai-Peng-Saranurak-Sidford-Song-Wang Õ(m+ n1.5)
2022 Chen–Kyng–Liu–Peng–Probst Gutenberg–Sachdeva m1+o(1)

3

History of Exact Bipartite MWM Algorithms

Year Authors Time bound
1890 Jacobi (written ∼1836) poly(n)
1946 Easterfield 2n poly(n)

1953-64 von Neumann, Kuhn, Gleyzal, Munkres, Balinsky–Gomory poly(n)
1969 Dinic–Kronrod O(n3)

1970-75 Edmonds–Karp, Tomizawa, Johnson Õ(mn)
1983 Gabow O(mn3/4 logW)

1988-97 Gabow–Tarjan, Orlin–Ahuja, Goldberg–Kennedy O(m
√
n log(nW))

1996 Cheriyan–Melhorn Õ(n5/2 log(nW))

2006 Kao–Lam–Sung–Ting, Sankowski O(nωW)

2012 Duan–Su O(m
√
n logW)

2020 vd Brand-Lee-Nanogkai-Peng-Saranurak-Sidford-Song-Wang Õ(m+ n1.5)
2022 Chen–Kyng–Liu–Peng–Probst Gutenberg–Sachdeva m1+o(1)

3

History of Exact Bipartite MWM Algorithms

Year Authors Time bound
1890 Jacobi (written ∼1836) poly(n)
1946 Easterfield 2n poly(n)

1953-64 von Neumann, Kuhn, Gleyzal, Munkres, Balinsky–Gomory poly(n)
1969 Dinic–Kronrod O(n3)

1970-75 Edmonds–Karp, Tomizawa, Johnson Õ(mn)
1983 Gabow O(mn3/4 logW)

1988-97 Gabow–Tarjan, Orlin–Ahuja, Goldberg–Kennedy O(m
√
n log(nW))

1996 Cheriyan–Melhorn Õ(n5/2 log(nW))

2006 Kao–Lam–Sung–Ting, Sankowski O(nωW)

2012 Duan–Su O(m
√
n logW)

2020 vd Brand-Lee-Nanogkai-Peng-Saranurak-Sidford-Song-Wang Õ(m+ n1.5)
2022 Chen–Kyng–Liu–Peng–Probst Gutenberg–Sachdeva m1+o(1)

3

History of Approximate MWM Algorithms

Year Authors Approximation Time bound
- folklore greedy 1/2 O(m log n)

1988 Gabow–Tarjan 1− ε O(m
√
n log(nε−1))

1999/2003 Preis, Drake–Hougardy 1/2 O(m)

2003 Drake–Hougardy 2/3− ε O(mε−1)

2004 Pettie–Sanders 2/3− ε O(m log ε−1)

2010 Duan–Pettie, Hange–Hougardy 3/4− ε O(m log n log ε−1)
2014 Duan–Pettie 1− ε O(mε−1 log ε−1)

2023 This talk (Bipartite only) 1− ε O(mε−1)

4

History of Approximate MWM Algorithms

Year Authors Approximation Time bound
- folklore greedy 1/2 O(m log n)

1988 Gabow–Tarjan 1− ε O(m
√
n log(nε−1))

1999/2003 Preis, Drake–Hougardy 1/2 O(m)

2003 Drake–Hougardy 2/3− ε O(mε−1)

2004 Pettie–Sanders 2/3− ε O(m log ε−1)

2010 Duan–Pettie, Hange–Hougardy 3/4− ε O(m log n log ε−1)
2014 Duan–Pettie 1− ε O(mε−1 log ε−1)

2023 This talk (Bipartite only) 1− ε O(mε−1)

4

History of Approximate MWM Algorithms

Year Authors Approximation Time bound
- folklore greedy 1/2 O(m log n)

1988 Gabow–Tarjan 1− ε O(m
√
n log(nε−1))

1999/2003 Preis, Drake–Hougardy 1/2 O(m)

2003 Drake–Hougardy 2/3− ε O(mε−1)

2004 Pettie–Sanders 2/3− ε O(m log ε−1)

2010 Duan–Pettie, Hange–Hougardy 3/4− ε O(m log n log ε−1)
2014 Duan–Pettie 1− ε O(mε−1 log ε−1)

2023 This talk (Bipartite only) 1− ε O(mε−1)

4

History of Approximate MWM Algorithms

Year Authors Approximation Time bound
- folklore greedy 1/2 O(m log n)

1988 Gabow–Tarjan 1− ε O(m
√
n log(nε−1))

1999/2003 Preis, Drake–Hougardy 1/2 O(m)

2003 Drake–Hougardy 2/3− ε O(mε−1)

2004 Pettie–Sanders 2/3− ε O(m log ε−1)

2010 Duan–Pettie, Hange–Hougardy 3/4− ε O(m log n log ε−1)
2014 Duan–Pettie 1− ε O(mε−1 log ε−1)

2023 This talk (Bipartite only) 1− ε O(mε−1)

4

History of Dynamic Matchings Algorithms

There is a lot of literature on dynamic matchings.

Too much literature...

Variations

• Exact vs approximate (with various ratios 1/2 vs 2/3 vs (1− ε))
• General graphs vs bipartite graphs
• Maximal matching vs MCM vs MWM
• Fully dynamic vs decremental vs incremental
• Amortized vs average case vs worst case run times

Results

[Wajc ’20], [ACCSW ’18], [BhaK ’21], [PelS ’16] [AAGPS ’19], [BeFH ’19], [ChaS ’18], [NeiS
’16], [Sank ’16], [BhHN ’16], [BaGS ’11], [BhHN ’17], [BhaK ’19], [BDHSS ’19], [Solo ’16],
[BhCH ’17], [BerS ’15], [BerS ’16], [Kiss ’22], [GLSSS ’19], [BehK ’22], [BeLM ’22], [RoSW

’22], [BeRR ’22], [GupP ’13], ... and many more ...

5

History of Dynamic Matchings Algorithms

There is a lot of literature on dynamic matchings. Too much literature...

Variations

• Exact vs approximate (with various ratios 1/2 vs 2/3 vs (1− ε))
• General graphs vs bipartite graphs
• Maximal matching vs MCM vs MWM
• Fully dynamic vs decremental vs incremental
• Amortized vs average case vs worst case run times

Results

[Wajc ’20], [ACCSW ’18], [BhaK ’21], [PelS ’16] [AAGPS ’19], [BeFH ’19], [ChaS ’18], [NeiS
’16], [Sank ’16], [BhHN ’16], [BaGS ’11], [BhHN ’17], [BhaK ’19], [BDHSS ’19], [Solo ’16],
[BhCH ’17], [BerS ’15], [BerS ’16], [Kiss ’22], [GLSSS ’19], [BehK ’22], [BeLM ’22], [RoSW

’22], [BeRR ’22], [GupP ’13], ... and many more ...

5

History of Dynamic Matchings Algorithms

There is a lot of literature on dynamic matchings. Too much literature...

Variations

• Exact vs approximate (with various ratios 1/2 vs 2/3 vs (1− ε))
• General graphs vs bipartite graphs
• Maximal matching vs MCM vs MWM
• Fully dynamic vs decremental vs incremental
• Amortized vs average case vs worst case run times

Results

[Wajc ’20], [ACCSW ’18], [BhaK ’21], [PelS ’16] [AAGPS ’19], [BeFH ’19], [ChaS ’18], [NeiS
’16], [Sank ’16], [BhHN ’16], [BaGS ’11], [BhHN ’17], [BhaK ’19], [BDHSS ’19], [Solo ’16],
[BhCH ’17], [BerS ’15], [BerS ’16], [Kiss ’22], [GLSSS ’19], [BehK ’22], [BeLM ’22], [RoSW

’22], [BeRR ’22], [GupP ’13], ... and many more ...

5

History of Dynamic Matchings Algorithms

There is a lot of literature on dynamic matchings. Too much literature...

Variations

• Exact vs approximate (with various ratios 1/2 vs 2/3 vs (1− ε))
• General graphs vs bipartite graphs
• Maximal matching vs MCM vs MWM
• Fully dynamic vs decremental vs incremental
• Amortized vs average case vs worst case run times

Results

[Wajc ’20], [ACCSW ’18], [BhaK ’21], [PelS ’16] [AAGPS ’19], [BeFH ’19], [ChaS ’18], [NeiS
’16], [Sank ’16], [BhHN ’16], [BaGS ’11], [BhHN ’17], [BhaK ’19], [BDHSS ’19], [Solo ’16],
[BhCH ’17], [BerS ’15], [BerS ’16], [Kiss ’22], [GLSSS ’19], [BehK ’22], [BeLM ’22], [RoSW

’22], [BeRR ’22], [GupP ’13], ... and many more ... 5

Our results

1. A simple auction algorithm for (1− ε)-approximate MWM.
2. Efficient dynamic algorithm, supporting one-sided vertex deletion, and
other-sided vertex insertion (simultaneously).

6

Multiplicative Auction Algorithm

7

The auction algorithm of Bertsekas ’81 and Demange–Gale–Sotomayor ’86

While ∃v ∈ V unallocated, util(uv) > 0, v bids yu + δ and allocated max util u.

Le t: Items u ∈ U Utility of v having u: Right: Bidders v ∈ V

Price yu initially 0 util(uv) = w(uv)− yu Initially unallocated

5

7

5

48

1

9

5

A

B

C

D

8

The auction algorithm of Bertsekas ’81 and Demange–Gale–Sotomayor ’86

While ∃v ∈ V unallocated, util(uv) > 0, v bids yu + δ and allocated max util u.

Le t: Items u ∈ U Utility of v having u: Right: Bidders v ∈ V

Price yu initially 0 util(uv) = w(uv)− yu Initially unallocated

5

7

5

48

1

9

5

A

B

C

D
8

The auction algorithm of Bertsekas ’81 and Demange–Gale–Sotomayor ’86

While ∃v ∈ V unallocated, util(uv) > 0, v bids yu + δ and allocated max util u.

Le t: Items u ∈ U Utility of v having u: Right: Bidders v ∈ V

Price yu initially 0 util(uv) = w(uv)− yu Initially unallocated

5

7

5

48

1

9

5

A

B

C

D
8

The auction algorithm of Bertsekas ’81 and Demange–Gale–Sotomayor ’86

While ∃v ∈ V unallocated, util(uv) > 0, v bids yu + δ and allocated max util u.

Le t: Items u ∈ U Utility of v having u: Right: Bidders v ∈ V

Price yu initially 0 util(uv) = w(uv)− yu Initially unallocated

5

7

5

48

1

9

5

A

B

C

D

δ

8

The auction algorithm of Bertsekas ’81 and Demange–Gale–Sotomayor ’86

While ∃v ∈ V unallocated, util(uv) > 0, v bids yu + δ and allocated max util u.

Le t: Items u ∈ U Utility of v having u: Right: Bidders v ∈ V

Price yu initially 0 util(uv) = w(uv)− yu Initially unallocated

5

7

5

48

1

9

5

A

B

C

D

2δ

8

The auction algorithm of Bertsekas ’81 and Demange–Gale–Sotomayor ’86

While ∃v ∈ V unallocated, util(uv) > 0, v bids yu + δ and allocated max util u.

Le t: Items u ∈ U Utility of v having u: Right: Bidders v ∈ V

Price yu initially 0 util(uv) = w(uv)− yu Initially unallocated

5

7

5

48

1

9

5

A

B

C

D

3δ

8

The auction algorithm of Bertsekas ’81 and Demange–Gale–Sotomayor ’86

While ∃v ∈ V unallocated, util(uv) > 0, v bids yu + δ and allocated max util u.

Le t: Items u ∈ U Utility of v having u: Right: Bidders v ∈ V

Price yu initially 0 util(uv) = w(uv)− yu Initially unallocated

5

7

5

48

1

9

5

A

B

C

D

3δ

δ

8

The auction algorithm of Bertsekas ’81 and Demange–Gale–Sotomayor ’86

While ∃v ∈ V unallocated, util(uv) > 0, v bids yu + δ and allocated max util u.

Le t: Items u ∈ U Utility of v having u: Right: Bidders v ∈ V

Price yu initially 0 util(uv) = w(uv)− yu Initially unallocated

5

7

5

48

1

9

5

A

B

C

D

δ

4δ

8

New algorithm

Original Auction Algorithm

While ∃v ∈ V unallocated, maxu util(uv) > 0, v bids yu + δ and allocated max util u.

Can be implemented in O(mδ−1W) time, gets additive error of nδ.

Multiplicative Auction Algorithm (NEW!)

While ∃v ∈ V unallocated, util(uv) > ε · w(uv), v bids yu + ε · w(uv) and allocated max util u.

Can be implemented in time O(mε−1), gets multiplicative error of (1− ε).

9

New algorithm

Original Auction Algorithm

While ∃v ∈ V unallocated, maxu util(uv) > 0, v bids yu + δ and allocated max util u.

Can be implemented in O(mδ−1W) time, gets additive error of nδ.

Multiplicative Auction Algorithm (NEW!)

While ∃v ∈ V unallocated, util(uv) > ε · w(uv), v bids yu + ε · w(uv) and allocated max util u.

Can be implemented in time O(mε−1), gets multiplicative error of (1− ε).

9

New algorithm

Original Auction Algorithm

While ∃v ∈ V unallocated, maxu util(uv) > 0, v bids yu + δ and allocated max util u.

Can be implemented in O(mδ−1W) time, gets additive error of nδ.

Multiplicative Auction Algorithm (NEW!)

While ∃v ∈ V unallocated, util(uv) > ε · w(uv), v bids yu + ε · w(uv) and allocated max util u.

Can be implemented in time O(mε−1), gets multiplicative error of (1− ε).

9

New algorithm

Original Auction Algorithm

While ∃v ∈ V unallocated, maxu util(uv) > 0, v bids yu + δ and allocated max util u.

Can be implemented in O(mδ−1W) time, gets additive error of nδ.

Multiplicative Auction Algorithm (NEW!)

While ∃v ∈ V unallocated, util(uv) > ε · w(uv), v bids yu + ε · w(uv) and allocated max util u.

Can be implemented in time O(mε−1), gets multiplicative error of (1− ε).

9

New algorithm

Original Auction Algorithm

While ∃v ∈ V unallocated, maxu util(uv) > 0, v bids yu + δ and allocated max util u.

Can be implemented in O(mδ−1W) time, gets additive error of nδ.

Multiplicative Auction Algorithm (NEW!)

While ∃v ∈ V unallocated, util(uv) > ε · w(uv), v bids yu + ε · w(uv) and allocated max util u.

Can be implemented in time O(mε−1), gets multiplicative error of (1− ε).

9

Example of the multiplicative auction algorithm with ε = 0.1

5

7

5

48

1

9

5

Price Utility

0

0

0

0

0

0

0

0

+0.7

10

Example of the multiplicative auction algorithm with ε = 0.1

5

6.3

4.3

47.3

1

9

5

Price Utility

6.3

0

0

0

0

0.7

0

0
10

Example of the multiplicative auction algorithm with ε = 0.1

5

6.3

4.3

47.3

1

9

5

Price Utility

6.3

0

0

0

0

0.7

0

0

+0.4

10

Example of the multiplicative auction algorithm with ε = 0.1

5

5.9

3.9

46.9

1

9

5

Price Utility

0

3.9

0

0

0

1.1

0

0
10

Example of the multiplicative auction algorithm with ε = 0.1

5

5.9

3.9

46.9

1

9

5

Price Utility

0

3.9

0

0

0

1.1

0

0

+0.6

10

Example of the multiplicative auction algorithm with ε = 0.1

5

5.3

3.3

46.3

1

9

5

Price Utility

5.3

0

0

0

0

1.7

0

0
10

Example of the multiplicative auction algorithm with ε = 0.1

5

5.3

3.3

46.3

1

9

5

Price Utility

5.3

0

0

0

0

1.7

0

0

+0.4

10

Example of the multiplicative auction algorithm with ε = 0.1

5

5.3

3.3

3.66.3

0.6

8.6

5

Price Utility

5.3

3.6

0

0

0

1.7

0.4

0
10

Example of the multiplicative auction algorithm with ε = 0.1

5

5.3

3.3

3.66.3

0.6

8.6

5

Price Utility

5.3

3.6

0

0

0

1.7

0.4

0

+0.6

10

Example of the multiplicative auction algorithm with ε = 0.1

5

4.7

2.7

3.65.7

0.6

8.6

5

Price Utility

0

3.6

5.7

0

0

2.3

0.4

0

+0.5

10

Example of the multiplicative auction algorithm with ε = 0.1

4.5

4.7

2.7

3.65.7

0.6

8.6

5

Price Utility

4.5

3.6

5.7

0

0.5

2.3

0.4

0

+0.9

10

Example of the multiplicative auction algorithm with ε = 0.1

4.5

4.7

2.7

2.75.7

−0.3

7.7

5

Price Utility

4.5

0

5.7

7.7

0.5

2.3

1.3

0

+0.3

10

Example of the multiplicative auction algorithm with ε = 0.1

4.5

4.4

2.4

2.75.4

7.7

5

Price Utility

4.5

2.4

0

7.7

0.5

2.6

1.3

0

+0.5

−0.3

10

Example of the multiplicative auction algorithm with ε = 0.1

4.5

3.9

1.9

2.74.9

7.7

5

Price Utility

4.5

0

4.9

7.7

0.5

3.1

1.3

0

+0.3
−0.3

10

Example of the multiplicative auction algorithm with ε = 0.1

4.5

3.9

1.9

2.44.9

−0.6

7.4

5

Price Utility

4.5

2.4

4.9

0

0.5

3.1

1.6

0

+0.7

10

Example of the multiplicative auction algorithm with ε = 0.1

4.5

3.9

1.9

1.74.9

−1.3

6.7

5

Price Utility

4.5

0

4.9

6.7

0.5

3.1

2.3

0

+0.2

10

Example of the multiplicative auction algorithm with ε = 0.1

...

10

Example of the multiplicative auction algorithm with ε = 0.1

4.5

2.2

0.2

−0.13.2

−3.1

4.9

5

Price Utility

4.5

0

3.2

4.9

0.5

4.8

4.1

0
10

Implementation and runtime of the algorithm

11

Implementation details

w(uv) ≈ (1 + ε)k0

..

.

(`− 1)εw(uv) ≈ (1 + ε)k1

(`− 2)εw(uv) ≈ (1 + ε)k2

εw(uv) ≈ (1 + ε)k`

1. Round all edges to powers of (1+ ε), i.e.
(1+ ε)0, (1+ ε)1, (1+ ε)2...

2. For each edge uv we only need to consider
them at weights iεw(uv) for i = 1, . . . , ℓ
where ℓ = 1/ε.
We can also round these to powers of (1+ ε).

3. ∀v ∈ V store “copies” of an edge in a
(priority) queue a ter doing an initial sort.

4. Run the multiplicative auction algorithm by
checking edges in (priority) queue order of
decreasing weight.

O(mε−1) to sort integers in [0, ε−1 log n], and O(mε−1) for the algorithm.

12

Implementation details

w(uv) ≈ (1 + ε)k0

..

.

(`− 1)εw(uv) ≈ (1 + ε)k1

(`− 2)εw(uv) ≈ (1 + ε)k2

εw(uv) ≈ (1 + ε)k`

1. Round all edges to powers of (1+ ε), i.e.
(1+ ε)0, (1+ ε)1, (1+ ε)2...

2. For each edge uv we only need to consider
them at weights iεw(uv) for i = 1, . . . , ℓ
where ℓ = 1/ε.
We can also round these to powers of (1+ ε).

3. ∀v ∈ V store “copies” of an edge in a
(priority) queue a ter doing an initial sort.

4. Run the multiplicative auction algorithm by
checking edges in (priority) queue order of
decreasing weight.

O(mε−1) to sort integers in [0, ε−1 log n], and O(mε−1) for the algorithm.

12

Implementation details

w(uv) ≈ (1 + ε)k0

...

(`− 1)εw(uv) ≈ (1 + ε)k1

(`− 2)εw(uv) ≈ (1 + ε)k2

εw(uv) ≈ (1 + ε)k`

1. Round all edges to powers of (1+ ε), i.e.
(1+ ε)0, (1+ ε)1, (1+ ε)2...

2. For each edge uv we only need to consider
them at weights iεw(uv) for i = 1, . . . , ℓ
where ℓ = 1/ε.
We can also round these to powers of (1+ ε).

3. ∀v ∈ V store “copies” of an edge in a
(priority) queue a ter doing an initial sort.

4. Run the multiplicative auction algorithm by
checking edges in (priority) queue order of
decreasing weight.

O(mε−1) to sort integers in [0, ε−1 log n], and O(mε−1) for the algorithm.

12

Implementation details

w(uv) ≈ (1 + ε)k0

...

(`− 1)εw(uv) ≈ (1 + ε)k1

(`− 2)εw(uv) ≈ (1 + ε)k2

εw(uv) ≈ (1 + ε)k`

1. Round all edges to powers of (1+ ε), i.e.
(1+ ε)0, (1+ ε)1, (1+ ε)2...

2. For each edge uv we only need to consider
them at weights iεw(uv) for i = 1, . . . , ℓ
where ℓ = 1/ε.
We can also round these to powers of (1+ ε).

3. ∀v ∈ V store “copies” of an edge in a
(priority) queue a ter doing an initial sort.

4. Run the multiplicative auction algorithm by
checking edges in (priority) queue order of
decreasing weight.

O(mε−1) to sort integers in [0, ε−1 log n], and O(mε−1) for the algorithm.

12

Implementation details

w(uv) ≈ (1 + ε)k0

...

(`− 1)εw(uv) ≈ (1 + ε)k1

(`− 2)εw(uv) ≈ (1 + ε)k2

εw(uv) ≈ (1 + ε)k`

1. Round all edges to powers of (1+ ε), i.e.
(1+ ε)0, (1+ ε)1, (1+ ε)2...

2. For each edge uv we only need to consider
them at weights iεw(uv) for i = 1, . . . , ℓ
where ℓ = 1/ε.
We can also round these to powers of (1+ ε).

3. ∀v ∈ V store “copies” of an edge in a
(priority) queue a ter doing an initial sort.

4. Run the multiplicative auction algorithm by
checking edges in (priority) queue order of
decreasing weight.

O(mε−1) to sort integers in [0, ε−1 log n], and O(mε−1) for the algorithm.
12

Dynamic algorithm details

Deleting a vertex u ∈ U

If there is a v ∈ V that was matched to u, v becomes unmatched a ter deletion.

Treat v as unallocated and continue running multiplicative auction algorithm.

Adding a new vertex v ∈ V along with incident edges

Treat v as unallocated and run multiplicative auction algorithm.

13

Dynamic algorithm details

Deleting a vertex u ∈ U

If there is a v ∈ V that was matched to u, v becomes unmatched a ter deletion.

Treat v as unallocated and continue running multiplicative auction algorithm.

Adding a new vertex v ∈ V along with incident edges

Treat v as unallocated and run multiplicative auction algorithm.

13

Dynamic algorithm details

Deleting a vertex u ∈ U

If there is a v ∈ V that was matched to u, v becomes unmatched a ter deletion.

Treat v as unallocated and continue running multiplicative auction algorithm.

Adding a new vertex v ∈ V along with incident edges

Treat v as unallocated and run multiplicative auction algorithm.

13

Dynamic algorithm details

Deleting a vertex u ∈ U

If there is a v ∈ V that was matched to u, v becomes unmatched a ter deletion.

Treat v as unallocated and continue running multiplicative auction algorithm.

Adding a new vertex v ∈ V along with incident edges

Treat v as unallocated and run multiplicative auction algorithm.

13

Correctness of the algorithm

14

LP for MWM

Variables xuv for each edge uv ∈ E.

max
∑
uv∈E

w(uv)xuv

s.t.
∑
v∈N(u)

xuv ≤ 1 ∀u ∈ U

∑
u∈N(v)

xuv ≤ 1 ∀v ∈ V

xuv ≥ 0 ∀uv ∈ E

Variables yu for u ∈ U, yv for v ∈ V.

min
∑
u∈U

yu +
∑
v∈V

yv

s.t. yu + yv ≥ w(uv) ∀uv ∈ E
yu ≥ 0 ∀u ∈ U
yv ≥ 0 ∀v ∈ V

Approximate dominance: [yu + yv ≥ (1− ε1) · w(uv) ∀uv ∈ E] & [yz ≥ 0 ∀z].
Approx. comp. slackness: [yu + yv ≤ (1+ ε0) · w(uv) ∀uv ∈ M] & [yz = 0 ∀z ̸∈ M].

15

LP for MWM

Variables xuv for each edge uv ∈ E.

max
∑
uv∈E

w(uv)xuv

s.t.
∑
v∈N(u)

xuv ≤ 1 ∀u ∈ U

∑
u∈N(v)

xuv ≤ 1 ∀v ∈ V

xuv ≥ 0 ∀uv ∈ E

Variables yu for u ∈ U, yv for v ∈ V.

min
∑
u∈U

yu +
∑
v∈V

yv

s.t. yu + yv ≥ w(uv) ∀uv ∈ E
yu ≥ 0 ∀u ∈ U
yv ≥ 0 ∀v ∈ V

Approximate dominance: [yu + yv ≥ (1− ε1) · w(uv) ∀uv ∈ E] & [yz ≥ 0 ∀z].
Approx. comp. slackness: [yu + yv ≤ (1+ ε0) · w(uv) ∀uv ∈ M] & [yz = 0 ∀z ̸∈ M].

15

LP for MWM

Variables xuv for each edge uv ∈ E.

max
∑
uv∈E

w(uv)xuv

s.t.
∑
v∈N(u)

xuv ≤ 1 ∀u ∈ U

∑
u∈N(v)

xuv ≤ 1 ∀v ∈ V

xuv ≥ 0 ∀uv ∈ E

Variables yu for u ∈ U, yv for v ∈ V.

min
∑
u∈U

yu +
∑
v∈V

yv

s.t. yu + yv ≥ w(uv) ∀uv ∈ E
yu ≥ 0 ∀u ∈ U
yv ≥ 0 ∀v ∈ V

Approximate dominance: [yu + yv ≥ (1− ε1) · w(uv) ∀uv ∈ E] & [yz ≥ 0 ∀z].

Approx. comp. slackness: [yu + yv ≤ (1+ ε0) · w(uv) ∀uv ∈ M] & [yz = 0 ∀z ̸∈ M].

15

LP for MWM

Variables xuv for each edge uv ∈ E.

max
∑
uv∈E

w(uv)xuv

s.t.
∑
v∈N(u)

xuv ≤ 1 ∀u ∈ U

∑
u∈N(v)

xuv ≤ 1 ∀v ∈ V

xuv ≥ 0 ∀uv ∈ E

Variables yu for u ∈ U, yv for v ∈ V.

min
∑
u∈U

yu +
∑
v∈V

yv

s.t. yu + yv ≥ w(uv) ∀uv ∈ E
yu ≥ 0 ∀u ∈ U
yv ≥ 0 ∀v ∈ V

Approximate dominance: [yu + yv ≥ (1− ε1) · w(uv) ∀uv ∈ E] & [yz ≥ 0 ∀z].
Approx. comp. slackness: [yu + yv ≤ (1+ ε0) · w(uv) ∀uv ∈ M] & [yz = 0 ∀z ̸∈ M].

15

Comp. Slackness + Approx. dominance = Approx. Optimality

Approximate dominance: [yu + yv ≥ (1− ε1) · w(uv) ∀uv ∈ E] & [yz ≥ 0 ∀z].
Approx. comp. slackness: [yu + yv ≤ (1+ ε0) · w(uv) ∀uv ∈ M] & [yz = 0 ∀z ̸∈ M].

Let M∗ be the maximum weight matching.

w(M) =
∑
uv∈M

w(uv)

≥
∑
uv∈M

(1+ ε0)
−1 · (yu + yv) Approx. comp. slackness

= (1+ ε0)
−1

∑
z∈U∪V

yz Complementarity

≥ (1+ ε0)
−1

∑
uv∈M∗

(yu + yv) Non-negativity of yz

≥ (1+ ε0)
−1(1− ε1) · w(M∗) Approximate dominance

16

Comp. Slackness + Approx. dominance = Approx. Optimality

Approximate dominance: [yu + yv ≥ (1− ε1) · w(uv) ∀uv ∈ E] & [yz ≥ 0 ∀z].
Approx. comp. slackness: [yu + yv ≤ (1+ ε0) · w(uv) ∀uv ∈ M] & [yz = 0 ∀z ̸∈ M].

Let M∗ be the maximum weight matching.

w(M) =
∑
uv∈M

w(uv)

≥
∑
uv∈M

(1+ ε0)
−1 · (yu + yv) Approx. comp. slackness

= (1+ ε0)
−1

∑
z∈U∪V

yz Complementarity

≥ (1+ ε0)
−1

∑
uv∈M∗

(yu + yv) Non-negativity of yz

≥ (1+ ε0)
−1(1− ε1) · w(M∗) Approximate dominance

16

Comp. Slackness + Approx. Dominance(example with ε = 0.1)

Approximate dominance: [yu + yv ≥ (1− ε1) · w(uv) ∀uv ∈ E] & [yz ≥ 0 ∀z].
Approx. comp. slackness: [yu + yv ≤ (1+ ε0) · w(uv) ∀uv ∈ M] & [yz = 0 ∀z ̸∈ M].

Consider edge uv ∈ E:
Case 1:
uv is in the matching.

yu + util(uv) = w(uv).
Case 2:
v ∈ V is matched.
v preferred another item.

Case 3:
v ∈ V is unmatched.
All items have high price.

5

7

5

48

1

9

5

Price Utility

4.5

0

3.2

4.9

0.5

4.8

4.1

0

A

B

C

D
17

Comp. Slackness + Approx. Dominance(example with ε = 0.1)

Approximate dominance: [yu + yv ≥ (1− ε1) · w(uv) ∀uv ∈ E] & [yz ≥ 0 ∀z].
Approx. comp. slackness: [yu + yv ≤ (1+ ε0) · w(uv) ∀uv ∈ M] & [yz = 0 ∀z ̸∈ M].

Consider edge uv ∈ E:

Case 1:
uv is in the matching.

yu + util(uv) = w(uv).
Case 2:
v ∈ V is matched.
v preferred another item.

Case 3:
v ∈ V is unmatched.
All items have high price.

5

7

5

48

1

9

5

Price Utility

4.5

0

3.2

4.9

0.5

4.8

4.1

0

A

B

C

D
17

Comp. Slackness + Approx. Dominance(example with ε = 0.1)

Approximate dominance: [yu + yv ≥ (1− ε1) · w(uv) ∀uv ∈ E] & [yz ≥ 0 ∀z].
Approx. comp. slackness: [yu + yv ≤ (1+ ε0) · w(uv) ∀uv ∈ M] & [yz = 0 ∀z ̸∈ M].

Consider edge uv ∈ E:
Case 1:
uv is in the matching.

yu + util(uv) = w(uv).

Case 2:
v ∈ V is matched.
v preferred another item.

Case 3:
v ∈ V is unmatched.
All items have high price.

5

7

5

48

1

9

5

Price Utility

4.5

0

3.2

4.9

0.5

4.8

4.1

0

A

B

C

D
17

Comp. Slackness + Approx. Dominance(example with ε = 0.1)

Approximate dominance: [yu + yv ≥ (1− ε1) · w(uv) ∀uv ∈ E] & [yz ≥ 0 ∀z].
Approx. comp. slackness: [yu + yv ≤ (1+ ε0) · w(uv) ∀uv ∈ M] & [yz = 0 ∀z ̸∈ M].

Consider edge uv ∈ E:
Case 1:
uv is in the matching.

yu + util(uv) = w(uv).
Case 2:
v ∈ V is matched.
v preferred another item.

Case 3:
v ∈ V is unmatched.
All items have high price.

5

7

5

48

1

9

5

Price Utility

4.5

0

3.2

4.9

0.5

4.8

4.1

0

A

B

C

D
17

Comp. Slackness + Approx. Dominance(example with ε = 0.1)

Approximate dominance: [yu + yv ≥ (1− ε1) · w(uv) ∀uv ∈ E] & [yz ≥ 0 ∀z].
Approx. comp. slackness: [yu + yv ≤ (1+ ε0) · w(uv) ∀uv ∈ M] & [yz = 0 ∀z ̸∈ M].

Consider edge uv ∈ E:
Case 1:
uv is in the matching.

yu + util(uv) = w(uv).
Case 2:
v ∈ V is matched.
v preferred another item.

Case 3:
v ∈ V is unmatched.
All items have high price.

5

7

5

48

1

9

5

Price Utility

4.5

0

3.2

4.9

0.5

4.8

4.1

0

A

B

C

D
17

Conclusion

• We present a much simpler algorithm for approximate MWM.

• The algorithm generalizes easily to (vertex) dynamic settings.

Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
2. Edge insertions / deletions? Fully dynamic?
3. Simple parallel / distributed / streaming algorithms?
4. General graphs?
5. (Decremental / incremental) (1− ε)-approximate SSSP / transshipment?

18

Conclusion

• We present a much simpler algorithm for approximate MWM.
• The algorithm generalizes easily to (vertex) dynamic settings.

Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
2. Edge insertions / deletions? Fully dynamic?
3. Simple parallel / distributed / streaming algorithms?
4. General graphs?
5. (Decremental / incremental) (1− ε)-approximate SSSP / transshipment?

18

Conclusion

• We present a much simpler algorithm for approximate MWM.
• The algorithm generalizes easily to (vertex) dynamic settings.

Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
2. Edge insertions / deletions? Fully dynamic?
3. Simple parallel / distributed / streaming algorithms?
4. General graphs?
5. (Decremental / incremental) (1− ε)-approximate SSSP / transshipment?

18

Conclusion

• We present a much simpler algorithm for approximate MWM.
• The algorithm generalizes easily to (vertex) dynamic settings.

Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?

2. Edge insertions / deletions? Fully dynamic?
3. Simple parallel / distributed / streaming algorithms?
4. General graphs?
5. (Decremental / incremental) (1− ε)-approximate SSSP / transshipment?

18

Conclusion

• We present a much simpler algorithm for approximate MWM.
• The algorithm generalizes easily to (vertex) dynamic settings.

Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
2. Edge insertions / deletions? Fully dynamic?

3. Simple parallel / distributed / streaming algorithms?
4. General graphs?
5. (Decremental / incremental) (1− ε)-approximate SSSP / transshipment?

18

Conclusion

• We present a much simpler algorithm for approximate MWM.
• The algorithm generalizes easily to (vertex) dynamic settings.

Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
2. Edge insertions / deletions? Fully dynamic?
3. Simple parallel / distributed / streaming algorithms?

4. General graphs?
5. (Decremental / incremental) (1− ε)-approximate SSSP / transshipment?

18

Conclusion

• We present a much simpler algorithm for approximate MWM.
• The algorithm generalizes easily to (vertex) dynamic settings.

Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
2. Edge insertions / deletions? Fully dynamic?
3. Simple parallel / distributed / streaming algorithms?
4. General graphs?

5. (Decremental / incremental) (1− ε)-approximate SSSP / transshipment?

18

Conclusion

• We present a much simpler algorithm for approximate MWM.
• The algorithm generalizes easily to (vertex) dynamic settings.

Open questions

1. Relation to multiplicative weight update (MWU) and local ratio algorithms?
2. Edge insertions / deletions? Fully dynamic?
3. Simple parallel / distributed / streaming algorithms?
4. General graphs?
5. (Decremental / incremental) (1− ε)-approximate SSSP / transshipment?

18

	Introduction

