Optimal Algorithm for Higher Order Voronoi Diagrams in 2D

The usefulness of nondeterminism

Timothy M. Chan, Pingan Cheng, Da Wei Zheng
SODA 2024

University of lllinois Urbana-Champaign & Aarhus University

Voronoi Diagrams

Figure 6.19: The Voronol Diagram.

[Shamos 1978]

Order-k Voronoi Diagrams

Basic facts

e Fundamental (textbook) problem

- Figure 6.33: A Voronol Diagram of Order Two.
[Shamos 1978] 3

Order-k Voronoi Diagrams

Basic facts

e Fundamental (textbook) problem

e Each region convex polygon

- Figure 6.33: A Voronol Diagram of Order Two.
[Shamos 1978] 3

Order-k Voronoi Diagrams

Basic facts

e Fundamental (textbook) problem
e Each region convex polygon
e Size is ©(nk)

- Figure 6.33: A Voronol Diagram of Order Two.
[Shamos 1978] 3

Lifting and k-levels

p = (px, Py)

/

p' = (px: Py, P + P])

Lifting and k-levels

p = (px, Py)

p' = (px: Py, P + P])
fo(x, ¥) := 2pux + 2pyy — (P2 + P2)
hp = {(X,_)/,Z) € R3 | Z = fP(X7y)}

y=0

Lifting and k-levels

p = (px, Py)

/

p' = (px: Py, P + P])

fo(x, ¥) := 2pux + 2pyy — (P2 + P2)
hp = {(X,_)/,Z) € R3 | Z = fP(X7y)}

y=0

Consider g = (gx, qy).

Lifting and k-levels

p = (px, Py)

/

p' = (px: Py, P + P])

fo(x, ¥) := 2pux + 2pyy — (P2 + P2)
hp = {(X,_)/,Z) € R3 | Z = fP(X7y)}

Consider g = (gx, qy).

hp(q)

Lifting and k-levels

p = (px, py)

/

p' = (px: Py, P + P])

fo(x,y) == 2pex + 2pyy — (P2 + p})
hp = {(X,y,Z) 6 R3 | zZ = fP(X7y)}

y=0

Consider the k-level of the planes.

Lifting and k-levels

p = (px, py)

/

p' = (px: Py, P + P])

fo(x,y) == 2pex + 2pyy — (P2 + p})
hp = {(X,y,Z) 6 R3 | zZ = fP(X7y)}

y=0

Consider the k-level of the planes.

Lifting and k-levels

p = (px, py)

/

p' = (px: Py, P + P])

fo(x,y) == 2pex + 2pyy — (P2 + p})
hp = {(X,y,Z) 6 R3 | zZ = fP(X7y)}

y=0

Consider the k-level of the planes.

Lifting and k-levels

‘Order k-Voronoi = k-level of 3D planes‘

p = (vap)/)

/

p' = (px: Py, P + P])

fo(x, ¥) := 2pux + 2pyy — (P2 + P2)
hy ={(x,y,2) € R3 | z = fo(x,y)}

y=0

Consider the k-level of the planes.

Algorithms for constructing Order-k Voronoi diagrams

Constructing the {1,..., k}-level

O(nk?log n) Lee '82
O(n%) Edelsbrunner, O'Rourke, and Seidel '83

Algorithms for constructing Order-k Voronoi diagrams

Constructing the {1,..., k}-level

O(nk?log n) Lee '82
Oo(n®) Edelsbrunner, O'Rourke, and Seidel '83
O(nk? + nlog n) Aggarwal, Guibas, Saxe, and Shor '87

Algorithms for constructing Order-k Voronoi diagrams

Constructing only the k-level

Algorithms for constructing Order-k Voronoi diagrams

Constructing only the k-level

O(nk+/nlog n) Edelsbrunner '86
O(nk log? n + n?) Chazelle and Edelsbrunner '85

Algorithms for constructing Order-k Voronoi diagrams

Constructing only the k-level

O(nk+/nlog n) Edelsbrunner '86
O(nk log? n + n?) Chazelle and Edelsbrunner '85
O(n**¢k) rand. Clarkson '86

Algorithms for constructing Order-k Voronoi diagrams

Constructing only the k-level

O(nk+/nlog n) Edelsbrunner '86

O(nklog? n + n?) Chazelle and Edelsbrunner '85

O(n**¢k) rand. Clarkson '86

O(nklogn + nlog> n) rand. inc. Agarwal, de Berg, Matou%ek, and Schwarzkopf '94

Algorithms for constructing Order-k Voronoi diagrams

Constructing only the k-level

O(nk+/nlog n)

0]
0]
0]

(
(
(
(
(

O(nklog? n + n?)

n'*¢k) rand.
nk log n 4 nlog> n) rand. inc.
n1+6k)

Edelsbrunner '86

Chazelle and Edelsbrunner '85

Clarkson '86

Agarwal, de Berg, Matousek, and Schwarzkopf '94
Agarwal and Matousek '95

Algorithms for constructing Order-k Voronoi diagrams

Constructing only the k-level

O(nk+/nlog n) Edelsbrunner '86

O(nklog? n + n?) Chazelle and Edelsbrunner '85

O(n**¢k) rand. Clarkson '86

O(nklogn + nlog> n) rand. inc. Agarwal, de Berg, Matou%ek, and Schwarzkopf '94
O(n**ek) Agarwal and Matousek '95

O(nk log k + nlog n) Chan '98, Chan and Tsakalidis '15

Algorithms for constructing Order-k Voronoi diagrams

Constructing only the k-level

O(nk+/nlog n)
O(nklog? n + n?)
n'*¢k) rand.

(
(
(
(nklog n + nlog® n) rand. inc.
(
(

o O O

n1+6k)

O(nklog k + nlog n)

O(nk20(°e” k) + nlog n) rand.

Edelsbrunner '86

Chazelle and Edelsbrunner '85

Clarkson '86

Agarwal, de Berg, Matousek, and Schwarzkopf '94
Agarwal and Matousek '95

Chan '98, Chan and Tsakalidis '15

Ramos '99

Algorithms for constructing Order-k Voronoi diagrams

Constructing only the k-level

O(nk+/nlog n) Edelsbrunner '86
O(nklog? n + n?) Chazelle and Edelsbrunner '85
O(n**¢k) rand. Clarkson '86
O(nklogn + nlog> n) rand. inc. Agarwal, de Berg, Matou%ek, and Schwarzkopf '94
O(n**ek) Agarwal and Matousek '95
O(nk log k + nlog n) Chan '98, Chan and Tsakalidis '15
O(nk20(°e” k) + nlog n) rand. Ramos '99
This paper:

’ O(nk + nlog n) rand. ‘ Optimal!

Self reductions

[Ramos '99] Reduces in O(n?) time rand. to O(n?/log? n) problems of size log n:

T(n) < O(n?/log? n) T(log n) + O(n?)

Self reductions

[Ramos '99] Reduces in O(n?) time rand. to O(n?/log? n) problems of size log n:

T(n) < O(n?/log? n) T(log n) + O(n?) (Idea: [AdBMS '94], cuttings for k-level)

Self reductions

[Ramos '99] Reduces in O(n?) time rand. to O(n?/log? n) problems of size log n:

T(n) < O(n?/log? n) T(log n) + O(n?) (Idea: [AdBMS '94], cuttings for k-level)

T(n) < O(n?200°g" 1)) by repeating Ramos divide and conquer.

Self reductions

[Ramos '99] Reduces in O(n?) time rand. to O(n?/log? n) problems of size log n:

T(n) < O(n?/log? n) T(log n) + O(n?) (Idea: [AdBMS '94], cuttings for k-level)

T(n) < O(n?200°g" 1)) by repeating Ramos divide and conquer.

[Chan '98] Reduces in O(nlog n) time to O(n/k) problems of size O(k):
T(n,k) < O(n/k)T(k)+ O(nlog n)

Self reductions

[Ramos '99] Reduces in O(n?) time rand. to O(n?/log? n) problems of size log n:

T(n) < O(n?/log? n) T(log n) + O(n?) (Idea: [AdBMS '94], cuttings for k-level)

T(n) < O(n?200°g" 1)) by repeating Ramos divide and conquer.

[Chan '98] Reduces in O(nlog n) time to O(n/k) problems of size O(k):

T(n, k) < O(n/k)T (k) + O(nlogn) (Idea: Shallow cuttings, can be made det.)

Self reductions

[Ramos '99] Reduces in O(n?) time rand. to O(n?/log? n) problems of size log n:

T(n) < O(n?/log? n) T(log n) + O(n?) (Idea: [AdBMS '94], cuttings for k-level)

T(n) < O(n?200°g" 1)) by repeating Ramos divide and conquer.

[Chan '98] Reduces in O(nlog n) time to O(n/k) problems of size O(k):

T(n, k) < O(n/k)T (k) + O(nlogn) (Idea: Shallow cuttings, can be made det.)

Self reductions

[Ramos '99] Reduces in O(n?) time rand. to O(n?/log? n) problems of size log n:

T(n) < O(n?/log? n) T(log n) + O(n?) (Idea: [AdBMS '94], cuttings for k-level)

T(n) < O(n?200°g" 1)) by repeating Ramos divide and conquer.

[Chan '98] Reduces in O(nlog n) time to O(n/k) problems of size O(k):

T(n, k) < O(n/k)T (k) + O(nlogn) (Idea: Shallow cuttings, can be made det.)

T(n, k) < O(n/k) (k?200°e”K))) 4 O(nlog n) = O(nk2°U°g" &) nlog n)

Self reductions

[Ramos '99] Reduces in O(n?) time rand. to O(n?/log? n) problems of size log n:

T(n) < O(n?/log? n) T(log n) + O(n?) (Idea: [AdBMS '94], cuttings for k-level)

T(n) < O(n?200°g" 1)) by repeating Ramos divide and conquer.

[Chan '98] Reduces in O(nlog n) time to O(n/k) problems of size O(k):

T(n, k) < O(n/k)T (k) + O(nlogn) (Idea: Shallow cuttings, can be made det.)

T(n, k) < O(n/k) (k?200°e”K))) 4 O(nlog n) = O(nk2°U°g" &) nlog n)

Goal: Find an O(n?) time algorithm!

Another consequence of Ramos’ divide and conquer

Repeat Ramos’ divide and conquer until problems are of size b = loglog log n.

T(n) < O(n*/(log n)?) - T(log n) + O(n?)
< 0(n?/(loglog n)?) - T(loglog n) + O(n?)
< 0(n?/(loglog log n)?) - T(loglog log n) + O(n?)

Another consequence of Ramos’ divide and conquer

Repeat Ramos’ divide and conquer until problems are of size b = loglog log n.

T(n) < O(n*/(log n)?) - T(log n) + O(n?)
< 0(n?/(loglog n)?) - T(loglog n) + O(n?)
< 0(n?/(loglog log n)?) - T(loglog log n) + O(n?)

Build an algebraic decision tree for problems of size b (Can take 22°) time).

Another consequence of Ramos’ divide and conquer

Repeat Ramos’ divide and conquer until problems are of size b = loglog log n.

T(n) < O(n*/(log n)?) - T(log n) + O(n?)
< 0(n?/(loglog n)?) - T(loglog n) + O(n?)
< 0(n?/(loglog log n)?) - T(loglog log n) + O(n?)

Build an algebraic decision tree for problems of size b (Can take 22°) time).

New goal: Find a quadratic depth decision tree!

Aside: On (algebraic) decision trees

fi(z)

AV
o

Aside: On (algebraic) decision trees

(

fi(z)

AV
o

Depth <

Outline of paper

10

Outline of paper

0. Reduce to decision tree problem.

10

Outline of paper

0. Reduce to decision tree problem.

1. Reduce from finding k-level to verifying a k-level.

10

Outline of paper

0. Reduce to decision tree problem.

1. Reduce from finding k-level to verifying a k-level.
(Idea: “Guess” entire k-levell)

10

Outline of paper

0. Reduce to decision tree problem.

1. Reduce from finding k-level to verifying a k-level.
(Idea: “Guess” entire k-levell)

2. Solve verification problem in O(n?) time.

10

Outline of paper

0. Reduce to decision tree problem.

1. Reduce from finding k-level to verifying a k-level.
(Idea: “Guess” entire k-levell)

2. Solve verification problem in O(n?) time.
(Idea: “standard” alg. w/ planar separators, recursion, dynamic 3d conv. hulls)

10

Going to higher dimensions

(Idea 1: Use similar ideas in removing 20(og™) factors for Hopcroft's problem)

11

Going to higher dimensions

(Idea 1: Use similar ideas in removing 20(og™) factors for Hopcroft's problem)

e View input as a vector x € R3".

11

Going to higher dimensions

(Idea 1: Use similar ideas in removing 20(og™) factors for Hopcroft's problem)

e View input as a vector x € R3".

o k-level determined by vertices in arrangement of planes
and above/below relations with other planes, i.e.
completely by comparisons of four planes hy, hy, h3, ha.

11

Going to higher dimensions

(Idea 1: Use similar ideas in removing 20(og™) factors for Hopcroft's problem)

R?)n

e View input as a vector x € R3".

o k-level determined by vertices in arrangement of planes
and above/below relations with other planes, i.e.
completely by comparisons of four planes hy, hy, h3, ha.

e Each comparison is a high dimensional algebraic surface.

Going to higher dimensions

(Idea 1: Use similar ideas in removing 20(og™) factors for Hopcroft's problem)

R?)n

e View input as a vector x € R3".

o k-level determined by vertices in arrangement of planes
and above/below relations with other planes, i.e.
completely by comparisons of four planes hy, hy, h3, ha.

e Each comparison is a high dimensional algebraic surface.

e By Milnor-Thom, there are (3n)°G" = nO() different
cells in arrangement.

Reduction to verification problem

12

Reduction to verification problem

(Idea 2: Use Ramos’ divide and conquer again!)

12

Reduction to verification problem

(Idea 2: Use Ramos’ divide and conquer again!)

Use just one round to get problems of size b = O(log n).

T(n) < O(n®/b) - T(b) + O(n?)

12

13

13

3

3n

N
N

.
.
.
.

"
- .
.

.
~ T
N
'
PN
'
R N
.
o
»

1
'
.
'
'
"~ -
'
I
N
.
N
N

13

RS

O(n?/b?)

subproblems

13

RSn

R3 O(n?/b?)

Subproblems

(\,

13

RSn

R3

O(n?/b?)

Subproblems

Verification step

13

R3

O(n?/b?)

subproblems

.
.
i
.
I
.
'
.
1
Y H
. .
'
N .,
- _N\ 7
R = aN- .
BN
o
N .
~‘ .
S .
Ky

Verification step

13

R3 ___O(n?/b?)

subproblems

.
.
i
.
I
.
'
.
1
Y H
. .
'
N .,
- _N\ 7
R = aN- .
BN
o
N .
~‘ .
S .
Ky

N/

Verification step

13

O(n?/b?)

Osubproblems
1

N/

Verification step

13

Overall runtime

o) g bW

time time
e |f we guessed wrong, the answer might be the

second most popular option. \%

N

Verification step

14

Overall runtime

o) g bW

time time
e |f we guessed wrong, the answer might be the

second most popular option. \%

e Number of active cells decreases by factor of 1/2.
N/

Verification step

14

Overall runtime

o) g bW

time time
e |f we guessed wrong, the answer might be the

second most popular option. \%

e Number of active cells decreases by factor of 1/2.
N/

T(n) < O(r2/B) - O(b?) + 6O . log (nO(n)> Verification step

14

Overall runtime

o) g bW

time time
e |f we guessed wrong, the answer might be the

second most popular option. \%

e Number of active cells decreases by factor of 1/2.
N/

T(n) < O(r2/B) - O(b?) + 6O . log (nO(n)> Verification step

<0 <n2 + b°Mnlog n)

14

Overall runtime

o) g bW

time time
e |f we guessed wrong, the answer might be the

second most popular option. \%

e Number of active cells decreases by factor of 1/2.

N

T(n) < O(r2/B) - O(b?) + 6O . log (nO(n)> Verification step
<0 <n2 + pOWp log n)
< 0(n?)

14

Conclusion

Open Problems

15

Conclusion

Open Problems

e Simpler algorithm?

15

Conclusion

Open Problems

e Simpler algorithm? (Decision trees impractical)

15

Conclusion

Open Problems

e Simpler algorithm? (Decision trees impractical)

e Optimal deterministic algorithm?

15

Conclusion

Open Problems

e Simpler algorithm? (Decision trees impractical)

e Optimal deterministic algorithm? (Ramos’ randomized self-reduction)

15

Conclusion

Open Problems

e Simpler algorithm? (Decision trees impractical)

e Optimal deterministic algorithm? (Ramos’ randomized self-reduction)

e Extensions of decision trees and non-determinism?

15

Conclusion

Open Problems

e Simpler algorithm? (Decision trees impractical)

e Optimal deterministic algorithm? (Ramos’ randomized self-reduction)

e Extensions of decision trees and non-determinism? (Need self-reduction)

15

Conclusion

Open Problems

e Simpler algorithm? (Decision trees impractical)

e Optimal deterministic algorithm? (Ramos’ randomized self-reduction)
e Extensions of decision trees and non-determinism? (Need self-reduction)

e Hopcroft's problem in o(n*/3) time?

15

Conclusion

Open Problems

e Simpler algorithm? (Decision trees impractical)

e Optimal deterministic algorithm? (Ramos’ randomized self-reduction)

e Extensions of decision trees and non-determinism? (Need self-reduction)
e Hopcroft's problem in o(n*/3) time?
e Detecting collinear triples in R? in o(n?) time?

15

Conclusion

Open Problems

e Simpler algorithm? (Decision trees impractical)

e Optimal deterministic algorithm? (Ramos’ randomized self-reduction)

e Extensions of decision trees and non-determinism? (Need self-reduction)
e Hopcroft's problem in o(n*/3) time?
e Detecting collinear triples in R? in o(n?) time?
e How to verify no instances?

15

Thank you for listening

R3n

R3 O(n?/b?)

subproblems

S10)]
; /

Verification step

16

