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Voronoi Diagrams

Figure 6.19: The Voronol Diagram.

[Shamos 1978]
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Order-k Voronoi Diagrams

Basic facts

e Fundamental (textbook) problem
e Each region convex polygon
e Size is ©(nk)

- Figure 6.33: A Voronol Diagram of Order Two.
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Lifting and k-levels

‘Order k-Voronoi = k-level of 3D planes‘

p = (vap)/)

/

p' = (px: Py, P + P])

fo(x, ¥) := 2pux + 2pyy — (P2 + P2)
hy ={(x,y,2) € R3 | z = fo(x,y)}

y=0

Consider the k-level of the planes.
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Algorithms for constructing Order-k Voronoi diagrams

Constructing only the k-level

O(nk+/nlog n) Edelsbrunner '86
O(nklog? n + n?) Chazelle and Edelsbrunner '85
O(n**¢k) rand. Clarkson '86
O(nklogn + nlog> n) rand. inc. Agarwal, de Berg, Matou%ek, and Schwarzkopf '94
O(n**ek) Agarwal and Matousek '95
O(nk log k + nlog n) Chan '98, Chan and Tsakalidis '15
O(nk20(°e” k) + nlog n) rand. Ramos '99
This paper:

’ O(nk + nlog n) rand. ‘ Optimal!
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Self reductions

[Ramos '99] Reduces in O(n?) time rand. to O(n?/log? n) problems of size log n:

T(n) < O(n?/log? n) T(log n) + O(n?) (Idea: [AdBMS '94], cuttings for k-level)

T(n) < O(n?200°g" 1)) by repeating Ramos divide and conquer.

[Chan '98] Reduces in O(nlog n) time to O(n/k) problems of size O(k):

T(n, k) < O(n/k)T (k) + O(nlogn) (Idea: Shallow cuttings, can be made det.)

T(n, k) < O(n/k) (k?200°e”K))) 4 O(nlog n) = O(nk2°U°g" &)  nlog n)

Goal: Find an O(n?) time algorithm!
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Another consequence of Ramos’ divide and conquer

Repeat Ramos’ divide and conquer until problems are of size b = loglog log n.

T(n) < O(n*/(log n)?) - T(log n) + O(n?)
< 0(n?/(loglog n)?) - T(loglog n) + O(n?)
< 0(n?/(loglog log n)?) - T(loglog log n) + O(n?)

Build an algebraic decision tree for problems of size b (Can take 22°) time).

New goal: Find a quadratic depth decision tree!
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Outline of paper

0. Reduce to decision tree problem.

1. Reduce from finding k-level to verifying a k-level.
(Idea: “Guess” entire k-levell)

2. Solve verification problem in O(n?) time.
(Idea: “standard” alg. w/ planar separators, recursion, dynamic 3d conv. hulls)
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Going to higher dimensions

(Idea 1: Use similar ideas in removing 20(og™ ) factors for Hopcroft's problem)

R?)n

e View input as a vector x € R3".

o k-level determined by vertices in arrangement of planes
and above/below relations with other planes, i.e.
completely by comparisons of four planes hy, hy, h3, ha.

e Each comparison is a high dimensional algebraic surface.

e By Milnor-Thom, there are (3n)°G" = nO() different
cells in arrangement.
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Reduction to verification problem

(Idea 2: Use Ramos’ divide and conquer again!)

Use just one round to get problems of size b = O(log n).

T(n) < O(n®/b) - T(b) + O(n?)
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Overall runtime

o) g bW

time time
e |f we guessed wrong, the answer might be the

second most popular option. \%

e Number of active cells decreases by factor of 1/2.

N

T(n) < O(r2/B) - O(b?) + 6O . log (nO(n)> Verification step
<0 <n2 + pOWp log n)
< 0(n?)
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Conclusion

Open Problems

e Simpler algorithm? (Decision trees impractical)

e Optimal deterministic algorithm? (Ramos’ randomized self-reduction)

e Extensions of decision trees and non-determinism? (Need self-reduction)
e Hopcroft's problem in o(n*/3) time?
e Detecting collinear triples in R? in o(n?) time?
e How to verify no instances?
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Thank you for listening
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