Optimal Algorithm for Higher Order Voronoi Diagrams in 2D

The usefulness of nondeterminism

Timothy M. Chan, Pingan Cheng, Da Wei Zheng
SODA 2024
University of Illinois Urbana-Champaign \& Aarhus University

Voronoi Diagrams

Figure 6.19: The Voronol Diagram.

Order- k Voronoi Diagrams

Figure 6.33: A Voronol Diagram of Order Two.

Order- k Voronoi Diagrams

Basic facts

- Fundamental (textbook) problem
- Each region convex polygon

Figure 6.33: A Voronol Diagram of Order Two.

Order-k Voronoi Diagrams

Basic facts

- Fundamental (textbook) problem
- Each region convex polygon
- Size is $\Theta(n k)$

Figure 6.33: A Voronol Diagram of Order Two.

Lifting and k-levels

$$
\begin{aligned}
p & :=\left(p_{x}, p_{y}\right) \\
p^{\prime} & :=\left(p_{x}, p_{y}, p_{x}^{2}+p_{y}^{2}\right)
\end{aligned}
$$

Lifting and k-levels

$$
\begin{aligned}
p & :=\left(p_{x}, p_{y}\right) \\
p^{\prime} & :=\left(p_{x}, p_{y}, p_{x}^{2}+p_{y}^{2}\right)
\end{aligned}
$$

$$
f_{p}(x, y):=2 p_{x} x+2 p_{y} y-\left(p_{x}^{2}+p_{y}^{2}\right)
$$

$$
h_{p}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f_{p}(x, y)\right\}
$$

$$
y=0
$$

Lifting and k-levels

$$
\begin{aligned}
& p:=\left(p_{x}, p_{y}\right) \\
& p^{\prime}:=\left(p_{x}, p_{y}, p_{x}^{2}+p_{y}^{2}\right) \\
& f_{p}(x, y):=2 p_{x} x+2 p_{y} y-\left(p_{x}^{2}+p_{y}^{2}\right) \\
& h_{p}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f_{p}(x, y)\right\} \\
& \text { Consider } q=\left(q_{x}, q_{y}\right) .
\end{aligned}
$$

Lifting and k-levels

$$
\begin{gathered}
p:=\left(p_{x}, p_{y}\right) \\
p^{\prime}:=\left(p_{x}, p_{y}, p_{x}^{2}+p_{y}^{2}\right) \\
f_{p}(x, y):=2 p_{x} x+2 p_{y} y-\left(p_{x}^{2}+p_{y}^{2}\right) \\
h_{p}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f_{p}(x, y)\right\}
\end{gathered}
$$

Consider $q=\left(q_{x}, q_{y}\right)$.

Lifting and k-levels

$$
\begin{gathered}
p:=\left(p_{x}, p_{y}\right) \\
p^{\prime}:=\left(p_{x}, p_{y}, p_{x}^{2}+p_{y}^{2}\right) \\
f_{p}(x, y):=2 p_{x} x+2 p_{y} y-\left(p_{x}^{2}+p_{y}^{2}\right) \\
h_{p}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f_{p}(x, y)\right\}
\end{gathered}
$$

Consider the k-level of the planes.

Lifting and k-levels

$$
\begin{gathered}
p:=\left(p_{x}, p_{y}\right) \\
p^{\prime}:=\left(p_{x}, p_{y}, p_{x}^{2}+p_{y}^{2}\right) \\
f_{p}(x, y):=2 p_{x} x+2 p_{y} y-\left(p_{x}^{2}+p_{y}^{2}\right) \\
h_{p}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f_{p}(x, y)\right\}
\end{gathered}
$$

Consider the k-level of the planes.

Lifting and k-levels

$$
\begin{gathered}
p:=\left(p_{x}, p_{y}\right) \\
p^{\prime}:=\left(p_{x}, p_{y}, p_{x}^{2}+p_{y}^{2}\right) \\
f_{p}(x, y):=2 p_{x} x+2 p_{y} y-\left(p_{x}^{2}+p_{y}^{2}\right) \\
h_{p}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f_{p}(x, y)\right\}
\end{gathered}
$$

Consider the k-level of the planes.

Lifting and k-levels

Order k-Voronoi $=k$-level of 3D planes

$$
\begin{aligned}
p & :=\left(p_{x}, p_{y}\right) \\
p^{\prime} & :=\left(p_{x}, p_{y}, p_{x}^{2}+p_{y}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
f_{p}(x, y) & :=2 p_{x} x+2 p_{y} y-\left(p_{x}^{2}+p_{y}^{2}\right) \\
h_{p} & :=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=f_{p}(x, y)\right\}
\end{aligned}
$$

Consider the k-level of the planes.

Algorithms for constructing Order- k Voronoi diagrams

Constructing the $\{1, \ldots, k\}$-level

$$
\begin{aligned}
& O\left(n k^{2} \log n\right) \\
& O\left(n^{3}\right)
\end{aligned}
$$

Lee '82

Edelsbrunner, O'Rourke, and Seidel ' 83

Algorithms for constructing Order- k Voronoi diagrams

Constructing the $\{1, \ldots, k\}$-level
$O\left(n k^{2} \log n\right)$
$O\left(n^{3}\right)$
$O\left(n k^{2}+n \log n\right)$

Lee '82
Edelsbrunner, O'Rourke, and Seidel '83
Aggarwal, Guibas, Saxe, and Shor ' 87

Algorithms for constructing Order- k Voronoi diagrams

Constructing only the k-level

Algorithms for constructing Order- k Voronoi diagrams

Constructing only the k-level

$$
\begin{aligned}
& O(n k \sqrt{n} \log n) \\
& O\left(n k \log ^{2} n+n^{2}\right)
\end{aligned}
$$

Edelsbrunner '86
Chazelle and Edelsbrunner '85

Algorithms for constructing Order- k Voronoi diagrams

Constructing only the k-level

$$
\begin{aligned}
& O(n k \sqrt{n} \log n) \\
& O\left(n k \log ^{2} n+n^{2}\right) \\
& O\left(n^{1+\varepsilon} k\right) \text { rand. }
\end{aligned}
$$

Edelsbrunner '86
Chazelle and Edelsbrunner '85
Clarkson '86

Algorithms for constructing Order- k Voronoi diagrams

Constructing only the k-level

$$
\begin{aligned}
& O(n k \sqrt{n} \log n) \\
& O\left(n k \log ^{2} n+n^{2}\right) \\
& O\left(n^{1+\varepsilon} k\right) \text { rand. } \\
& O\left(n k \log n+n \log ^{3} n\right) \text { rand. inc. }
\end{aligned}
$$

Chazelle and Edelsbrunner '85
Clarkson '86
Agarwal, de Berg, Matoušek, and Schwarzkopf '94

Algorithms for constructing Order- k Voronoi diagrams

Constructing only the k-level

$O(n k \sqrt{n} \log n)$
$O\left(n k \log ^{2} n+n^{2}\right)$
$O\left(n^{1+\varepsilon} k\right)$ rand.
$O\left(n k \log n+n \log ^{3} n\right)$ rand. inc. $O\left(n^{1+\varepsilon} k\right)$

Edelsbrunner '86
Chazelle and Edelsbrunner ' 85
Clarkson '86
Agarwal, de Berg, Matoušek, and Schwarzkopf '94
Agarwal and Matoušek '95

Algorithms for constructing Order- k Voronoi diagrams

Constructing only the k-level

$O(n k \sqrt{n} \log n)$
$O\left(n k \log ^{2} n+n^{2}\right)$
$O\left(n^{1+\varepsilon} k\right)$ rand.
$O\left(n k \log n+n \log ^{3} n\right)$ rand. inc.
$O\left(n^{1+\varepsilon} k\right)$
$O(n k \log k+n \log n)$

Edelsbrunner '86
Chazelle and Edelsbrunner '85
Clarkson '86
Agarwal, de Berg, Matoušek, and Schwarzkopf '94
Agarwal and Matoušek '95
Chan '98, Chan and Tsakalidis '15

Algorithms for constructing Order- k Voronoi diagrams

Constructing only the k-level

$$
\begin{aligned}
& O(n k \sqrt{n} \log n) \\
& O\left(n k \log ^{2} n+n^{2}\right) \\
& O\left(n^{1+\varepsilon} k\right) \text { rand. } \\
& O\left(n k \log n+n \log ^{3} n\right) \text { rand. inc. } \\
& O\left(n^{1+\varepsilon} k\right) \\
& O(n k \log k+n \log n) \\
& O\left(n k 2^{O\left(\log ^{*} k\right)}+n \log n\right) \text { rand. }
\end{aligned}
$$

Edelsbrunner '86
Chazelle and Edelsbrunner '85
Clarkson '86
Agarwal, de Berg, Matoušek, and Schwarzkopf '94
Agarwal and Matoušek '95
Chan '98, Chan and Tsakalidis '15
Ramos '99

Algorithms for constructing Order- k Voronoi diagrams

Constructing only the k-level

$$
\begin{aligned}
& O(n k \sqrt{n} \log n) \\
& O\left(n k \log ^{2} n+n^{2}\right) \\
& O\left(n^{1+\varepsilon} k\right) \text { rand. } \\
& O\left(n k \log n+n \log ^{3} n\right) \text { rand. inc. } \\
& O\left(n^{1+\varepsilon} k\right) \\
& O(n k \log k+n \log n) \\
& O\left(n k 2^{O\left(\log ^{*} k\right)}+n \log n\right) \text { rand. }
\end{aligned}
$$

This paper:

$$
O(n k+n \log n) \text { rand. Optimal! }
$$

Edelsbrunner '86
Chazelle and Edelsbrunner '85
Clarkson '86
Agarwal, de Berg, Matoušek, and Schwarzkopf '94
Agarwal and Matoušek '95
Chan '98, Chan and Tsakalidis '15
Ramos '99

Self reductions

[Ramos '99] Reduces in $O\left(n^{2}\right)$ time rand. to $O\left(n^{2} / \log ^{2} n\right)$ problems of size $\log n$:

$$
T(n) \leq O\left(n^{2} / \log ^{2} n\right) T(\log n)+O\left(n^{2}\right)
$$

Self reductions
[Ramos '99] Reduces in $O\left(n^{2}\right)$ time rand. to $O\left(n^{2} / \log ^{2} n\right)$ problems of size $\log n$:
$T(n) \leq O\left(n^{2} / \log ^{2} n\right) T(\log n)+O\left(n^{2}\right) \quad$ (Idea: [AdBMS '94], cuttings for k-level)

Self reductions

[Ramos '99] Reduces in $O\left(n^{2}\right)$ time rand. to $O\left(n^{2} / \log ^{2} n\right)$ problems of size $\log n$:

$$
T(n) \leq O\left(n^{2} / \log ^{2} n\right) T(\log n)+O\left(n^{2}\right) \quad \text { (Idea: [AdBMS '94], cuttings for } k \text {-level) }
$$

$T(n) \leq O\left(n^{2} 2^{O\left(\log ^{*} n\right)}\right)$ by repeating Ramos divide and conquer.

Self reductions

[Ramos '99] Reduces in $O\left(n^{2}\right)$ time rand. to $O\left(n^{2} / \log ^{2} n\right)$ problems of size $\log n$:

$$
T(n) \leq O\left(n^{2} / \log ^{2} n\right) T(\log n)+O\left(n^{2}\right) \quad \text { (Idea: [AdBMS '94], cuttings for } k \text {-level) }
$$

$T(n) \leq O\left(n^{2} 2^{O\left(\log ^{*} n\right)}\right)$ by repeating Ramos divide and conquer.
[Chan '98] Reduces in $O(n \log n)$ time to $O(n / k)$ problems of size $O(k)$:

$$
T(n, k) \leq O(n / k) T(k)+O(n \log n)
$$

Self reductions

[Ramos '99] Reduces in $O\left(n^{2}\right)$ time rand. to $O\left(n^{2} / \log ^{2} n\right)$ problems of size $\log n$:

$$
T(n) \leq O\left(n^{2} / \log ^{2} n\right) T(\log n)+O\left(n^{2}\right) \quad \text { (Idea: [AdBMS '94], cuttings for } k \text {-level) }
$$

$T(n) \leq O\left(n^{2} 2^{O\left(\log ^{*} n\right)}\right)$ by repeating Ramos divide and conquer.
[Chan '98] Reduces in $O(n \log n)$ time to $O(n / k)$ problems of size $O(k)$:

$$
T(n, k) \leq O(n / k) T(k)+O(n \log n) \quad \text { (Idea: Shallow cuttings, can be made det.) }
$$

Self reductions

[Ramos '99] Reduces in $O\left(n^{2}\right)$ time rand. to $O\left(n^{2} / \log ^{2} n\right)$ problems of size $\log n$:

$$
T(n) \leq O\left(n^{2} / \log ^{2} n\right) T(\log n)+O\left(n^{2}\right) \quad \text { (Idea: [AdBMS '94], cuttings for } k \text {-level) }
$$

$T(n) \leq O\left(n^{2} 2^{O\left(\log ^{*} n\right)}\right)$ by repeating Ramos divide and conquer.
[Chan '98] Reduces in $O(n \log n)$ time to $O(n / k)$ problems of size $O(k)$:

$$
T(n, k) \leq O(n / k) T(k)+O(n \log n) \quad \text { (Idea: Shallow cuttings, can be made det.) }
$$

Self reductions

[Ramos '99] Reduces in $O\left(n^{2}\right)$ time rand. to $O\left(n^{2} / \log ^{2} n\right)$ problems of size $\log n$:

$$
T(n) \leq O\left(n^{2} / \log ^{2} n\right) T(\log n)+O\left(n^{2}\right) \quad(\text { Idea: [AdBMS '94], cuttings for } k \text {-level) }
$$

$T(n) \leq O\left(n^{2} 2^{O\left(\log ^{*} n\right)}\right)$ by repeating Ramos divide and conquer.
[Chan '98] Reduces in $O(n \log n)$ time to $O(n / k)$ problems of size $O(k)$:

$$
\begin{gathered}
T(n, k) \leq O(n / k) T(k)+O(n \log n) \quad \text { (Idea: Shallow cuttings, can be made det.) } \\
\left.T(n, k) \leq O(n / k)\left(k^{2} 2^{O\left(\log ^{*} k\right)}\right)\right)+O(n \log n)=O\left(n k 2^{O\left(\log ^{*} k\right)}+n \log n\right)
\end{gathered}
$$

Self reductions

[Ramos '99] Reduces in $O\left(n^{2}\right)$ time rand. to $O\left(n^{2} / \log ^{2} n\right)$ problems of size $\log n$:

$$
T(n) \leq O\left(n^{2} / \log ^{2} n\right) T(\log n)+O\left(n^{2}\right) \quad(\text { Idea: [AdBMS '94], cuttings for } k \text {-level) }
$$

$T(n) \leq O\left(n^{2} 2^{O\left(\log ^{*} n\right)}\right)$ by repeating Ramos divide and conquer.
[Chan '98] Reduces in $O(n \log n)$ time to $O(n / k)$ problems of size $O(k)$:

$$
\begin{gathered}
T(n, k) \leq O(n / k) T(k)+O(n \log n) \quad \text { (Idea: Shallow cuttings, can be } \\
\left.(n, k) \leq O(n / k)\left(k^{2} 2^{O\left(\log ^{*} k\right)}\right)\right)+O(n \log n)=O\left(n k 2^{O\left(\log ^{*} k\right)}+n \log n\right)
\end{gathered}
$$

Goal: Find an $O\left(n^{2}\right)$ time algorithm!

Another consequence of Ramos' divide and conquer

Repeat Ramos' divide and conquer until problems are of size $b=\log \log \log n$.

$$
\begin{aligned}
T(n) & \leq O\left(n^{2} /(\log n)^{2}\right) \cdot T(\log n)+O\left(n^{2}\right) \\
& \leq O\left(n^{2} /(\log \log n)^{2}\right) \cdot T(\log \log n)+O\left(n^{2}\right) \\
& \leq O\left(n^{2} /(\log \log \log n)^{2}\right) \cdot T(\log \log \log n)+O\left(n^{2}\right)
\end{aligned}
$$

Another consequence of Ramos' divide and conquer

Repeat Ramos' divide and conquer until problems are of size $b=\log \log \log n$.

$$
\begin{aligned}
T(n) & \leq O\left(n^{2} /(\log n)^{2}\right) \cdot T(\log n)+O\left(n^{2}\right) \\
& \leq O\left(n^{2} /(\log \log n)^{2}\right) \cdot T(\log \log n)+O\left(n^{2}\right) \\
& \leq O\left(n^{2} /(\log \log \log n)^{2}\right) \cdot T(\log \log \log n)+O\left(n^{2}\right)
\end{aligned}
$$

Build an algebraic decision tree for problems of size b (Can take $2^{2^{O(b)}}$ time).

Another consequence of Ramos' divide and conquer

Repeat Ramos' divide and conquer until problems are of size $b=\log \log \log n$.

$$
\begin{aligned}
T(n) & \leq O\left(n^{2} /(\log n)^{2}\right) \cdot T(\log n)+O\left(n^{2}\right) \\
& \leq O\left(n^{2} /(\log \log n)^{2}\right) \cdot T(\log \log n)+O\left(n^{2}\right) \\
& \leq O\left(n^{2} /(\log \log \log n)^{2}\right) \cdot T(\log \log \log n)+O\left(n^{2}\right)
\end{aligned}
$$

Build an algebraic decision tree for problems of size b (Can take $2^{2^{O(b)}}$ time).

New goal: Find a quadratic depth decision tree!

Aside: On (algebraic) decision trees

Aside: On (algebraic) decision trees

Outline of paper

Outline of paper

0 . Reduce to decision tree problem.

Outline of paper

0 . Reduce to decision tree problem.

1. Reduce from finding k-level to verifying a k-level.

Outline of paper

0 . Reduce to decision tree problem.

1. Reduce from finding k-level to verifying a k-level. (Idea: "Guess" entire k-level!)

Outline of paper

0 . Reduce to decision tree problem.

1. Reduce from finding k-level to verifying a k-level. (Idea: "Guess" entire k-level!)
2. Solve verification problem in $O\left(n^{2}\right)$ time.

Outline of paper

0 . Reduce to decision tree problem.

1. Reduce from finding k-level to verifying a k-level.
(Idea: "Guess" entire k-level!)
2. Solve verification problem in $O\left(n^{2}\right)$ time.
(Idea: "standard" alg. w/ planar separators, recursion, dynamic 3d conv. hulls)

Going to higher dimensions

(Idea 1: Use similar ideas in removing $2^{O\left(\log ^{*} n\right)}$ factors for Hopcroft's problem)

Going to higher dimensions

(Idea 1: Use similar ideas in removing $2^{O\left(\log ^{*} n\right)}$ factors for Hopcroft's problem)

- View input as a vector $x \in \mathbb{R}^{3 n}$.

Going to higher dimensions

(Idea 1: Use similar ideas in removing $2^{O\left(\log ^{*} n\right)}$ factors for Hopcroft's problem)

- View input as a vector $x \in \mathbb{R}^{3 n}$.
- k-level determined by vertices in arrangement of planes and above/below relations with other planes, i.e. completely by comparisons of four planes $h_{1}, h_{2}, h_{3}, h_{4}$.

Going to higher dimensions

(Idea 1: Use similar ideas in removing $2^{O\left(\log ^{*} n\right)}$ factors for Hopcroft's problem)

- View input as a vector $x \in \mathbb{R}^{3 n}$.
- k-level determined by vertices in arrangement of planes and above/below relations with other planes, i.e. completely by comparisons of four planes $h_{1}, h_{2}, h_{3}, h_{4}$.
- Each comparison is a high dimensional algebraic surface.

Going to higher dimensions

(Idea 1: Use similar ideas in removing $2^{O\left(\log ^{*} n\right)}$ factors for Hopcroft's problem)

- View input as a vector $x \in \mathbb{R}^{3 n}$.
- k-level determined by vertices in arrangement of planes and above/below relations with other planes, i.e. completely by comparisons of four planes $h_{1}, h_{2}, h_{3}, h_{4}$.
- Each comparison is a high dimensional algebraic surface.
- By Milnor-Thom, there are $(3 n)^{O(3 n)}=n^{O(n)}$ different cells in arrangement.

Reduction to verification problem

Reduction to verification problem

(Idea 2: Use Ramos' divide and conquer again!)

Reduction to verification problem

(Idea 2: Use Ramos' divide and conquer again!)
Use just one round to get problems of size $b=O(\log n)$.

$$
T(n) \leq O\left(n^{2} / b\right) \cdot T(b)+O\left(n^{2}\right)
$$

Overall runtime

- If we guessed wrong, the answer might be the second most popular option.

Overall runtime

- If we guessed wrong, the answer might be the second most popular option.
- Number of active cells decreases by factor of $1 / 2$.

Overall runtime

- If we guessed wrong, the answer might be the second most popular option.
- Number of active cells decreases by factor of $1 / 2$.

$$
T(n) \leq O\left(n^{2} / b^{2}\right) \cdot O\left(b^{2}\right)+b^{O(1)} \cdot \log \left(n^{O(n)}\right)
$$

Verification step

Overall runtime

- If we guessed wrong, the answer might be the second most popular option.
- Number of active cells decreases by factor of $1 / 2$.

$$
\begin{aligned}
T(n) & \leq O\left(n^{2} / b^{2}\right) \cdot O\left(b^{2}\right)+b^{O(1)} \cdot \log \left(n^{O(n)}\right) \\
& \leq O\left(n^{2}+b^{O(1)} n \log n\right)
\end{aligned}
$$

Verification step

Overall runtime

- If we guessed wrong, the answer might be the second most popular option.
- Number of active cells decreases by factor of $1 / 2$.

$$
\begin{aligned}
T(n) & \leq O\left(n^{2} / b^{2}\right) \cdot O\left(b^{2}\right)+b^{O(1)} \cdot \log \left(n^{O(n)}\right) \\
& \leq O\left(n^{2}+b^{O(1)} n \log n\right) \\
& \leq O\left(n^{2}\right)
\end{aligned}
$$

Verification step

Conclusion

Open Problems

Conclusion

Open Problems

- Simpler algorithm?

Conclusion

Open Problems

- Simpler algorithm? (Decision trees impractical)

Conclusion

Open Problems

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm?

Conclusion

Open Problems

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm? (Ramos' randomized self-reduction)

Conclusion

Open Problems

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm? (Ramos' randomized self-reduction)
- Extensions of decision trees and non-determinism?

Conclusion

Open Problems

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm? (Ramos' randomized self-reduction)
- Extensions of decision trees and non-determinism? (Need self-reduction)

Conclusion

Open Problems

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm? (Ramos' randomized self-reduction)
- Extensions of decision trees and non-determinism? (Need self-reduction)
- Hopcroft's problem in $o\left(n^{4 / 3}\right)$ time?

Conclusion

Open Problems

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm? (Ramos' randomized self-reduction)
- Extensions of decision trees and non-determinism? (Need self-reduction)
- Hopcroft's problem in $o\left(n^{4 / 3}\right)$ time?
- Detecting collinear triples in \mathbb{R}^{2} in $o\left(n^{2}\right)$ time?

Conclusion

Open Problems

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm? (Ramos' randomized self-reduction)
- Extensions of decision trees and non-determinism? (Need self-reduction)
- Hopcroft's problem in $o\left(n^{4 / 3}\right)$ time?
- Detecting collinear triples in \mathbb{R}^{2} in $o\left(n^{2}\right)$ time?
- How to verify no instances?

Thank you for listening

