Optimal Algorithm for Higher Order Voronoi Diagrams in 2D

The usefulness of nondeterminism

Timothy M. Chan, Pingan Cheng, **Da Wei Zheng** SODA 2024

University of Illinois Urbana-Champaign & Aarhus University

Voronoi Diagrams

Figure 6.19: The Voronol Diagram.

[Shamos 1978]

Order-*k* **Voronoi Diagrams**

• Fundamental (textbook) problem

. •

.

Order-*k* **Voronoi Diagrams**

Basic facts

- Fundamental (textbook) problem
- Each region convex polygon

Figure 6.33: A Voronol Diagram of Order Two.

. •

.

Order-*k* **Voronoi Diagrams**

Basic facts

- Fundamental (textbook) problem
- Each region convex polygon
- Size is $\Theta(nk)$

Figure 6.33: A Voronoi Diagram of Order Two.

[Shamos 1978]

. •

.

Constructing the $\{1, \ldots, k\}$ -level

 $O(nk^2 \log n)$ Lee '82 $O(n^3)$ Edelsbrunner, O'Rourke, and Seidel '83

Constructing the $\{1, \ldots, k\}$ -level

$O(nk^2 \log n)$	Lee '82
$O(n^{3})$	Edelsbrunner, O'Rourke, and Seidel '83
$O(nk^2 + n\log n)$	Aggarwal, Guibas, Saxe, and Shor '87

Algorithms for constructing Order-*k* Voronoi diagrams

Constructing only the *k*-level

Algorithms for constructing Order-k Voronoi diagrams

Constructing only the *k*-level

 $O(nk\sqrt{n}\log n)$ $O(nk\log^2 n + n^2)$

Edelsbrunner '86 Chazelle and Edelsbrunner '85

Algorithms for constructing Order-k Voronoi diagrams

Constructing only the *k*-level

 $O(nk\sqrt{n}\log n)$ $O(nk\log^2 n + n^2)$ $O(n^{1+\varepsilon}k)$ rand. Edelsbrunner '86 Chazelle and Edelsbrunner '85 Clarkson '86

 $O(nk\sqrt{n}\log n)$ $O(nk\log^2 n + n^2)$ $O(n^{1+\varepsilon}k) \text{ rand.}$ $O(nk\log n + n\log^3 n) \text{ rand. inc.}$

Edelsbrunner '86 Chazelle and Edelsbrunner '85 Clarkson '86 Agarwal, de Berg, Matoušek, and Schwarzkopf '94

 $O(nk\sqrt{n}\log n)$ $O(nk\log^2 n + n^2)$ $O(n^{1+\varepsilon}k) \text{ rand.}$ $O(nk\log n + n\log^3 n) \text{ rand. inc.}$ $O(n^{1+\varepsilon}k)$

Edelsbrunner '86 Chazelle and Edelsbrunner '85 Clarkson '86 Agarwal, de Berg, Matoušek, and Schwarzkopf '94 Agarwal and Matoušek '95

 $O(nk\sqrt{n}\log n)$ $O(nk\log^2 n + n^2)$ $O(n^{1+\varepsilon}k) \text{ rand.}$ $O(nk\log n + n\log^3 n) \text{ rand. inc.}$ $O(n^{1+\varepsilon}k)$ $O(nk\log k + n\log n)$

Edelsbrunner '86 Chazelle and Edelsbrunner '85 Clarkson '86 Agarwal, de Berg, Matoušek, and Schwarzkopf '94 Agarwal and Matoušek '95 Chan '98, Chan and Tsakalidis '15

 $O(nk\sqrt{n}\log n)$ $O(nk\log^2 n + n^2)$ $O(n^{1+\varepsilon}k) \text{ rand.}$ $O(nk\log n + n\log^3 n) \text{ rand. inc.}$ $O(n^{1+\varepsilon}k)$ $O(nk\log k + n\log n)$ $O(nk2^{O(\log^* k)} + n\log n) \text{ rand.}$

Edelsbrunner '86 Chazelle and Edelsbrunner '85 Clarkson '86 Agarwal, de Berg, Matoušek, and Schwarzkopf '94 Agarwal and Matoušek '95 Chan '98, Chan and Tsakalidis '15 Ramos '99

Edelsbrunner '86

 $O(nk\sqrt{n}\log n)$ $O(nk\log^2 n + n^2)$ $O(n^{1+\varepsilon}k) \text{ rand.}$ $O(nk\log n + n\log^3 n) \text{ rand. inc.}$ $O(n^{1+\varepsilon}k)$ $O(nk\log k + n\log n)$ $O(nk2^{O(\log^* k)} + n\log n) \text{ rand.}$

Chazelle and Edelsbrunner '85 Clarkson '86 Agarwal, de Berg, Matoušek, and Schwarzkopf '94 Agarwal and Matoušek '95 Chan '98, Chan and Tsakalidis '15 Ramos '99

This paper:

 $O(nk + n \log n)$ rand. Optimal!

[Ramos '99] Reduces in $O(n^2)$ time rand. to $O(n^2/\log^2 n)$ problems of size log *n*: $T(n) \le O(n^2/\log^2 n) T(\log n) + O(n^2)$

[Ramos '99] Reduces in $O(n^2)$ time rand. to $O(n^2/\log^2 n)$ problems of size log *n*: $T(n) \le O(n^2/\log^2 n) T(\log n) + O(n^2)$ (Idea: [AdBMS '94], cuttings for *k*-level)

[Ramos '99] Reduces in $O(n^2)$ time rand. to $O(n^2/\log^2 n)$ problems of size log *n*: $T(n) \le O(n^2/\log^2 n) T(\log n) + O(n^2)$ (Idea: [AdBMS '94], cuttings for *k*-level)

 $T(n) \leq O(n^2 2^{O(\log^* n)})$ by repeating Ramos divide and conquer.

[Ramos '99] Reduces in $O(n^2)$ time rand. to $O(n^2/\log^2 n)$ problems of size log *n*: $T(n) \le O(n^2/\log^2 n) T(\log n) + O(n^2)$ (Idea: [AdBMS '94], cuttings for *k*-level)

 $T(n) \leq O(n^2 2^{O(\log^* n)})$ by repeating Ramos divide and conquer.

[Chan '98] Reduces in $O(n \log n)$ time to O(n/k) problems of size O(k): $T(n,k) \le O(n/k)T(k) + O(n \log n)$

[Ramos '99] Reduces in $O(n^2)$ time rand. to $O(n^2/\log^2 n)$ problems of size log *n*: $T(n) \le O(n^2/\log^2 n) T(\log n) + O(n^2)$ (Idea: [AdBMS '94], cuttings for *k*-level)

 $T(n) \leq O(n^2 2^{O(\log^* n)})$ by repeating Ramos divide and conquer.

[Chan '98] Reduces in $O(n \log n)$ time to O(n/k) problems of size O(k): $T(n,k) \le O(n/k)T(k) + O(n \log n)$ (Idea: Shallow cuttings, can be made det.)

[Ramos '99] Reduces in $O(n^2)$ time rand. to $O(n^2/\log^2 n)$ problems of size log *n*: $T(n) \le O(n^2/\log^2 n) T(\log n) + O(n^2)$ (Idea: [AdBMS '94], cuttings for *k*-level)

 $T(n) \leq O(n^2 2^{O(\log^* n)})$ by repeating Ramos divide and conquer.

[Chan '98] Reduces in $O(n \log n)$ time to O(n/k) problems of size O(k): $T(n,k) \le O(n/k)T(k) + O(n \log n)$ (Idea: Shallow cuttings, can be made det.)

[Ramos '99] Reduces in $O(n^2)$ time rand. to $O(n^2/\log^2 n)$ problems of size log *n*: $T(n) \le O(n^2/\log^2 n) T(\log n) + O(n^2)$ (Idea: [AdBMS '94], cuttings for *k*-level)

 $T(n) \leq O(n^2 2^{O(\log^* n)})$ by repeating Ramos divide and conquer.

[Chan '98] Reduces in $O(n \log n)$ time to O(n/k) problems of size O(k): $T(n,k) \le O(n/k)T(k) + O(n \log n)$ (Idea: Shallow cuttings, can be made det.)

 $T(n,k) \le O(n/k) \left(k^2 2^{O(\log^* k)}\right) + O(n \log n) = O(nk 2^{O(\log^* k)} + n \log n)$

[Ramos '99] Reduces in $O(n^2)$ time rand. to $O(n^2/\log^2 n)$ problems of size log *n*: $T(n) \le O(n^2/\log^2 n) T(\log n) + O(n^2)$ (Idea: [AdBMS '94], cuttings for *k*-level)

 $T(n) \leq O(n^2 2^{O(\log^* n)})$ by repeating Ramos divide and conquer.

[Chan '98] Reduces in $O(n \log n)$ time to O(n/k) problems of size O(k): $T(n,k) \le O(n/k)T(k) + O(n \log n)$ (Idea: Shallow cuttings, can be made det.)

 $T(n,k) \le O(n/k) \left(k^2 2^{O(\log^* k)} \right) + O(n \log n) = O(n k 2^{O(\log^* k)} + n \log n)$

Goal: Find an $O(n^2)$ time algorithm!

Repeat Ramos' divide and conquer until problems are of size $b = \log \log \log n$.

$$T(n) \le O(n^2/(\log n)^2) \cdot T(\log n) + O(n^2)$$

$$\le O(n^2/(\log \log n)^2) \cdot T(\log \log n) + O(n^2)$$

$$\le O(n^2/(\log \log \log n)^2) \cdot T(\log \log \log n) + O(n^2)$$

Repeat Ramos' divide and conquer until problems are of size $b = \log \log \log n$.

$$T(n) \le O(n^2/(\log n)^2) \cdot T(\log n) + O(n^2)$$

$$\le O(n^2/(\log \log n)^2) \cdot T(\log \log n) + O(n^2)$$

$$\le O(n^2/(\log \log \log n)^2) \cdot T(\log \log \log n) + O(n^2)$$

Build an algebraic decision tree for problems of size b (Can take $2^{2^{O(b)}}$ time).

Repeat Ramos' divide and conquer until problems are of size $b = \log \log \log n$.

$$T(n) \leq O(n^2/(\log n)^2) \cdot T(\log n) + O(n^2)$$

$$\leq O(n^2/(\log \log n)^2) \cdot T(\log \log n) + O(n^2)$$

$$\leq O(n^2/(\log \log \log n)^2) \cdot T(\log \log \log n) + O(n^2)$$

Build an algebraic decision tree for problems of size b (Can take $2^{2^{O(b)}}$ time).

New goal: Find a quadratic depth decision tree!

Aside: On (algebraic) decision trees

Aside: On (algebraic) decision trees

Outline of paper

0. Reduce to decision tree problem.

- 0. Reduce to decision tree problem.
- 1. Reduce from finding k-level to verifying a k-level.

- 0. Reduce to decision tree problem.
- Reduce from finding k-level to verifying a k-level. (Idea: "Guess" entire k-level!)

- 0. Reduce to decision tree problem.
- Reduce from finding k-level to verifying a k-level. (Idea: "Guess" entire k-level!)
- 2. Solve verification problem in $O(n^2)$ time.

- 0. Reduce to decision tree problem.
- Reduce from finding k-level to verifying a k-level. (Idea: "Guess" entire k-level!)
- 2. Solve verification problem in $O(n^2)$ time.

(Idea: "standard" alg. w/ planar separators, recursion, dynamic 3d conv. hulls)

Going to higher dimensions

Going to higher dimensions

(Idea 1: Use similar ideas in removing $2^{O(\log^* n)}$ factors for Hopcroft's problem)

• View input as a vector $x \in \mathbb{R}^{3n}$.

- View input as a vector $x \in \mathbb{R}^{3n}$.
- k-level determined by vertices in arrangement of planes and above/below relations with other planes, i.e. completely by comparisons of four planes h₁, h₂, h₃, h₄.

Going to higher dimensions

- View input as a vector $x \in \mathbb{R}^{3n}$.
- k-level determined by vertices in arrangement of planes and above/below relations with other planes, i.e. completely by comparisons of four planes h₁, h₂, h₃, h₄.
- Each comparison is a high dimensional algebraic surface.

Going to higher dimensions

- View input as a vector $x \in \mathbb{R}^{3n}$.
- k-level determined by vertices in arrangement of planes and above/below relations with other planes, i.e. completely by comparisons of four planes h₁, h₂, h₃, h₄.
- Each comparison is a high dimensional algebraic surface.
- By Milnor-Thom, there are $(3n)^{O(3n)} = n^{O(n)}$ different cells in arrangement.

Reduction to verification problem

(Idea 2: Use Ramos' divide and conquer again!)

(Idea 2: Use Ramos' divide and conquer again!)

Use just one round to get problems of size $b = O(\log n)$.

$$T(n) \leq O(n^2/b) \cdot T(b) + O(n^2)$$

• If we guessed wrong, the answer might be the second most popular option.

- If we guessed wrong, the answer might be the second most popular option.
- Number of active cells decreases by factor of 1/2.

- If we guessed wrong, the answer might be the second most popular option.
- Number of active cells decreases by factor of 1/2.

$$T(n) \leq O(n^2/b^2) \cdot O(b^2) + b^{O(1)} \cdot \log\left(n^{O(n)}
ight)$$

- If we guessed wrong, the answer might be the second most popular option.
- Number of active cells decreases by factor of 1/2.

$$egin{aligned} T(n) &\leq O(n^2/b^2) \cdot O(b^2) + b^{O(1)} \cdot \log\left(n^{O(n)}
ight) \ &\leq O\left(n^2 + b^{O(1)}n\log n
ight) \end{aligned}$$

- If we guessed wrong, the answer might be the second most popular option.
- Number of active cells decreases by factor of 1/2.

$$T(n) \le O(n^2/b^2) \cdot O(b^2) + b^{O(1)} \cdot \log(n^{O(n)})$$
$$\le O(n^2 + b^{O(1)} n \log n)$$
$$\le O(n^2)$$

• Simpler algorithm?

• Simpler algorithm? (Decision trees impractical)

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm?

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm? (Ramos' randomized self-reduction)

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm? (Ramos' randomized self-reduction)
- Extensions of decision trees and non-determinism?

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm? (Ramos' randomized self-reduction)
- Extensions of decision trees and non-determinism? (Need self-reduction)

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm? (Ramos' randomized self-reduction)
- Extensions of decision trees and non-determinism? (Need self-reduction)
 - Hopcroft's problem in $o(n^{4/3})$ time?
Open Problems

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm? (Ramos' randomized self-reduction)
- Extensions of decision trees and non-determinism? (Need self-reduction)
 - Hopcroft's problem in $o(n^{4/3})$ time?
 - Detecting collinear triples in \mathbb{R}^2 in $o(n^2)$ time?

Open Problems

- Simpler algorithm? (Decision trees impractical)
- Optimal deterministic algorithm? (Ramos' randomized self-reduction)
- Extensions of decision trees and non-determinism? (Need self-reduction)
 - Hopcroft's problem in $o(n^{4/3})$ time?
 - Detecting collinear triples in \mathbb{R}^2 in $o(n^2)$ time?
 - How to verify no instances?

Thank you for listening

