
Optimal Algorithm for Higher Order Voronoi Diagrams in 2D

The usefulness of nondeterminism

Timothy M. Chan, Pingan Cheng, Da Wei Zheng

SODA 2024

University of Illinois Urbana-Champaign & Aarhus University

1



Voronoi Diagrams

[Shamos 1978]
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Order-k Voronoi Diagrams

Basic facts

• Fundamental (textbook) problem

• Each region convex polygon

• Size is Θ(nk)
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Lifting and k-levels

Order k-Voronoi = k-level of 3D planes

p := (px , py )

p′ := (px , py , p
2
x + p2y )

fp(x , y) := 2pxx + 2pyy − (p2x + p2y )

hp := {(x , y , z) ∈ R3 | z = fp(x , y)}

Consider q = (qx , qy ).

Consider the k-level of the planes.

y = 0

p

p′

hp
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Algorithms for constructing Order-k Voronoi diagrams

Constructing the {1, . . . , k}-level

O(nk2 log n) Lee ’82

O(n3) Edelsbrunner, O’Rourke, and Seidel ’83

O(nk2 + n log n) Aggarwal, Guibas, Saxe, and Shor ’87
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Algorithms for constructing Order-k Voronoi diagrams

Constructing only the k-level

O(nk
√
n log n) Edelsbrunner ’86

O(nk log2 n + n2) Chazelle and Edelsbrunner ’85

O(n1+εk) rand. Clarkson ’86

O(nk log n + n log3 n) rand. inc. Agarwal, de Berg, Matoušek, and Schwarzkopf ’94

O(n1+εk) Agarwal and Matoušek ’95

O(nk log k + n log n) Chan ’98, Chan and Tsakalidis ’15

O(nk2O(log∗ k) + n log n) rand. Ramos ’99

This paper:

O(nk + n log n) rand. Optimal!
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O(nk log k + n log n) Chan ’98, Chan and Tsakalidis ’15

O(nk2O(log∗ k) + n log n) rand. Ramos ’99

This paper:

O(nk + n log n) rand. Optimal!

6



Algorithms for constructing Order-k Voronoi diagrams

Constructing only the k-level

O(nk
√
n log n) Edelsbrunner ’86

O(nk log2 n + n2) Chazelle and Edelsbrunner ’85

O(n1+εk) rand. Clarkson ’86

O(nk log n + n log3 n) rand. inc. Agarwal, de Berg, Matoušek, and Schwarzkopf ’94
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O(nk log k + n log n) Chan ’98, Chan and Tsakalidis ’15

O(nk2O(log∗ k) + n log n) rand. Ramos ’99

This paper:

O(nk + n log n) rand. Optimal!

6



Algorithms for constructing Order-k Voronoi diagrams

Constructing only the k-level

O(nk
√
n log n) Edelsbrunner ’86

O(nk log2 n + n2) Chazelle and Edelsbrunner ’85

O(n1+εk) rand. Clarkson ’86

O(nk log n + n log3 n) rand. inc. Agarwal, de Berg, Matoušek, and Schwarzkopf ’94
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Self reductions

[Ramos ’99] Reduces in O(n2) time rand. to O(n2/ log2 n) problems of size log n:

T (n) ≤ O(n2/ log2 n)T (log n) + O(n2)

(Idea: [AdBMS ’94], cuttings for k-level)

T (n) ≤ O(n22O(log∗ n)) by repeating Ramos divide and conquer.

[Chan ’98] Reduces in O(n log n) time to O(n/k) problems of size O(k):

T (n, k) ≤ O(n/k)T (k) + O(n log n) (Idea: Shallow cuttings, can be made det.)

T (n, k) ≤ O(n/k)
(
k22O(log∗ k))

)
+ O(n log n) = O(nk2O(log∗ k) + n log n)

Goal: Find an O(n2) time algorithm!
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Another consequence of Ramos’ divide and conquer

Repeat Ramos’ divide and conquer until problems are of size b = log log log n.

T (n) ≤ O(n2/(log n)2) · T (log n) + O(n2)

≤ O(n2/(log log n)2) · T (log log n) + O(n2)

≤ O(n2/(log log log n)2) · T (log log log n) + O(n2)

Build an algebraic decision tree for problems of size b (Can take 22
O(b)

time).

New goal: Find a quadratic depth decision tree!

8
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Aside: On (algebraic) decision trees

f1(x) T 0

< = >
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Depth
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Outline of paper

0. Reduce to decision tree problem.

1. Reduce from finding k-level to verifying a k-level.

(Idea: “Guess” entire k-level!)

2. Solve verification problem in O(n2) time.

(Idea: “standard” alg. w/ planar separators, recursion, dynamic 3d conv. hulls)
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Going to higher dimensions

(Idea 1: Use similar ideas in removing 2O(log∗ n) factors for Hopcroft’s problem)

• View input as a vector x ∈ R3n.

• k-level determined by vertices in arrangement of planes

and above/below relations with other planes, i.e.

completely by comparisons of four planes h1, h2, h3, h4.

• Each comparison is a high dimensional algebraic surface.

• By Milnor-Thom, there are (3n)O(3n) = nO(n) different

cells in arrangement.

x

R3n

11
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Reduction to verification problem

(Idea 2: Use Ramos’ divide and conquer again!)

Use just one round to get problems of size b = O(log n).

T (n) ≤ O(n2/b) · T (b) + O(n2)

12
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Overall runtime

• If we guessed wrong, the answer might be the

second most popular option.

• Number of active cells decreases by factor of 1/2.

T (n) ≤ O(n2/b2) · O(b2) + bO(1) · log
(
nO(n)

)
≤ O

(
n2 + bO(1)n log n

)
≤ O(n2)

Verification step

O(b2)
time

bO(1)

time
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Conclusion

Open Problems

• Simpler algorithm? (Decision trees impractical)

• Optimal deterministic algorithm? (Ramos’ randomized self-reduction)

• Extensions of decision trees and non-determinism? (Need self-reduction)

• Hopcroft’s problem in o(n4/3) time?

• Detecting collinear triples in R2 in o(n2) time?

• How to verify no instances?
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Thank you for listening

x

R3n R3 O(n2/b2)
subproblems

≤ b

Verification step

O(b2)
time

bO(1)

time
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